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Who am I?

Enric Florit

• Maths + CS student at University of Barcelona
• I do number theory and cryptography
• Member of Hacking Lliure
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Public-key cryptography

We want to

• Exchange keys (for symmetric crypto)
• Sign data
• Encrypt things?
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RSA

RSA is easier to understand, it’s basic modular
arithmetic:

• Take two large primes p and q, set N = p× q and
φ(N) = (p− 1)(q− 1).

• Choose e between 1 and φ(pq) such that
gcd(e, φ(pq)) = 1.

• Compute d ≡ e−1 mod φ(pq).
• pub = (N, e), priv = (p,q,d).
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The equation of an elliptic curve

An elliptic curve is the set of points (x, y) in the plane
that satisfy the equation

y2 = x3 + Ax+ B,

where A,B are constants1 (integer, rational, real,
complex...).

1With 4A3 + 27B2 ̸= 0
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The graph of an elliptic curve

y2 = x3 − 4x+ 7
2

If we plot this curve, we have a picture like this:
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The graph of an elliptic curve

y2 = x3 + 5x

If we plot this curve, we have a picture like this:
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The graph of an elliptic curve

y2 = x3 − 5x+ 2

If we plot this curve, we have a picture like this:
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There exist other equations

We could also work with other equivalent curves

x2 + y2 = 1− dx2y2

−1 1

xx

1

−1

y

Edwards curves with d = 300 (red), d =
√
8 (yellow) and

d = −0.9 (blue)2
2https://commons.wikimedia.org/wiki/File:Edward-curves.svg
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The graph of an elliptic curve

We say a point (x, y) is on the curve if it satisfies the
equation y2 = x3 + Ax+ B.

For example (2, 3) satisfiesx3 + 1 = 23 + 1 = 9
y2 = 32 = 9

=⇒ y2 = x3 + 1.
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Sum of points

We care about elliptic curves because we can add points.

Huh? Coordinate-wise sum? No!

We are going to add pairs of points geometrically.
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Sum of points

1. Pick a pair of points
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Sum of points

2. Draw a straight line through them

(it intersects the curve again!)
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Sum of points

3. Reflect the third point R vertically to get P+ Q
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The Point Infinity

We also consider a point at infinity, under the rule

P+∞ = P

It is visualized like so

This means we can subtract points! (P+ Q) + R = ∞, and
so R = −(P+ Q).
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Sum of points

What about adding P+ P?

Draw the tangent!
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Sum of points

What about adding P+ P? Draw the tangent!
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Addition formulas (not that important!)

To add P = (x1, y1) and Q = (x2, y2),

• If x1 ̸= x2, then

x3 = m2 − x1 − x2, y3 = m(x1 − x3)− y1,

where m =
y2 − y1
x2 − x1

.

• If x1 = x2 and y1 ̸= y2, then P+ Q = ∞.
• If x1 = x2 and y1 ̸= 0, then

x3 = m2 − 2x1, y3 = m(x1 − x3)− y1

where m =
3x21 + A
2y1

.

• If x1 = x2 and y1 = y2 = 0, then P+ Q = ∞.
• P+∞ = P.
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Multiplication of points

If n is an integer and P is a point, we may define n× P as
adding P to itself n times.

(We just saw an example of what 2P looks like)
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Curves mod p

Consider a prime number p.

We can consider our
numbers (point coordinates and constants) on Fp, the
Finite Field with p elements.3 In practice, we will be
working mod p, or % p. For instance, if our curve is

y2 = x3 + 1242617x+ 21985,

then mod 7 it becomes

y2 = x3 + 5x+ 5,

and now the only points on the curve are

{(1, 2), (1, 5), (2, 3), (2, 4), (5, 1), (5, 6)}

3Sometimes called GF(p), the Galois Field of p elements, and also
Z/pZ.
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Curves mod p

How do you find all points?
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Curves mod p

There’s a catch!

If the only values are 0, 1, 2, . . . ,p− 1, then our curve goes
from looking like this...
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Curves mod p

...to looking like this:4

Graph of y2 = x3 + 2x+ 3 mod 97

4https://bit.ly/2GEZoLL 18/43
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Wow, such big numbers
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Wow, such big numbers

If you allow for negative values, then you can take:

a = 4, b = −1, c = 11
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Wow, such big numbers

The smallest such values are:5

a = 154476802108746166441951315019919837485664325669565431700026634898253202035277999

b = 36875131794129999827197811565225474825492979968971970996283137471637224634055579

c = 4373612677928697257861252602371390152816537558161613618621437993378423467772036

5https://qr.ae/TW7qSM
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Elliptic Curve Cryptography

https://xkcd.com/538/
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Elliptic Curve Cryptography

https://xkcd.com/538/
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Elliptic Curve Cryptography Scheme

The typical scheme for ECC consists of:

• The parameters of the curve equation
(y2 = x3 + Ax+ B, x2 + y2 = 1− dx2y2...),

• A prime number p,
• A point P = (x0, y0) on the curve, called a generator,
• A number n for which nP = ∞, and for all 0 < k < n,
kP ̸= ∞ (the order of P).

We want n to be large, and gcd(p,n) = 1.

The first two points are referenced as CURVE, and the
scheme as (CURVE,n,P).
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Elliptic Curve Diffie Hellman

We now have the curve parameters:y2 = x3 + Ax+ B
p,P = (x0, y0),n

In this scheme, a private key is an integer dA between 1
and n− 1.

The corresponding public key is dAP.
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Key Exchange // ECDH

ALICE

dA,dAP

(Alice gets dBP)

dA · (dBP)

BOB

dB,dBP

(Bob gets dAP)

dB · (dAP)

They both have the same point dAdBP = (x, y).

Take x, or its hash, as the shared symmetric key.
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ECDSA

We can also perform Digital Signature using a private key
and a random integer (used only once).

Let h be the hashed message, and choose a random
integer r. Then compute

s = r−1(h+ dAx),

with x = x(rP). The signature is

(h, s, rP).
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ECDSA - Verification

The curve is (CURVE,n,P) Alice’s public key is Q = dAP,
and the signature is (h, s, rP). To verify it, compute:

u1 = s−1h mod n

u2 = s−1x(rP) mod n

V := u1P+ u2Q.

If the message is correct, then the verification holds:

V = u1P+ u2Q = s−1hP+ s−1xdAP = s−1(h+ xdA)P = rP.
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Discrete Logarithm Problem

Say you encounter a public key Q and a curve
(CURVE,n,P), we want to find k such that

Q = kP

k will be the private key!

This is a Discrete Logarithm Problem:

Given P and kP, find k.
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DLP “Attacks”

The are general algorithms to solve a DLP:

• Giant Step-Baby Step (memory intensive)
• Pollard’s Rho and Lambda
• Pohling-Hellman
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MOV Attack

Based on pairings, i.e. mapping pairs of points to a finite
field Fpk where the discrete logarithm is easier to
compute.

Still expensive in most cases.
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Anomalous curves

If an elliptic curve has exactly p points over Fp, we say it
is anomalous.

We don’t use them for cryptography, because they can be
attacked in polynomial time.
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The p-adic attack

We will attack curves mod p having exactly p points (p a
prime, as always).

As always, P is the generator, and Q is a public key. We
know there is some k with

Q = kP

It would be nice to just do k = Q
P but... We can’t really

divide points!
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The p-adic attack (background)

If we have a curve E : y2 = x3 + Ax+ B in Fp and two
points P and Q, we can lift it to a curve
Ẽ : y2 = x3 + Ãx+ B̃ and two points P̃ and Q̃ withA ≡ Ã, B ≡ Ã mod p

P ≡ P̃, Q ≡ Q̃ mod p
.

−→
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The p-adic attack (background)

If we have a curve E in rationals, we can consider the
reduction map modulo p, which takes each coordinate
mod p.

redp : E(Q) → E(Fp)(a
b ,
c
d

)
7→ (ab−1, cd−1) mod p

∞ 7→ ∞

If p divides b or d, then the point goes to∞.

The map redp is linear (as in linear algebra), meaning

redp(nP) = n× redp(P)

redp(P+ Q) = redp(P) + redp(Q).
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The p-adic attack (background)

If a curve E has n points in Fp, then all points satisfy:

nP = ∞.
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The p-adic attack (background)

Given a curve E(Q), take the set of points with
denominator divisible by p:6

Er =
{(a

b ,
c
d

)
∈ E(Q) | p2r|b, p3r|d

}
.

If P is in E1, then p divides the denominators of the
point, and so redp(P) = ∞ (and viceversa).

We can consider the p-adic logarithm

λ1 : E1 → Z/p4Z

(x, y) 7→ 1
p
x
y mod p4

6This is the p-adic bit of the talk!
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The p-adic attack

• Begin with a curve E(Fp) with exactly p points, P the
generator and Q a public key.

• Lift E, P and Q to Ẽ(Q), P̃ and Q̃ in rational numbers.
• Let P̃1 = p · P̃, Q̃1 = p · Q̃. Then P̃1 ∈ Ẽ1, since
redp(P̃1) = redp(p · P̃) = p · redp(P̃) = ∞. Same with
Q̃1.

• If P̃1 ̸∈ Ẽ2, then

k ≡ λ1(Q̃1)
λ1(P̃1)

mod p
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The p-adic attack (Proof)

We can easily check that k is the private key, i.e. kP = Q:

kλ1(P̃1)−λ1(Q̃1) = λ1(kP̃1−Q̃1) = λ1(kpP̃−pQ̃) = pλ1(kP̃−Q̃) ≡ 0 mod p,

and we can do this because

∞ = kP− Q = redp(kP̃− Q̃) =⇒ kP̃− Q̃ ∈ Ẽ1.

The numbers involved in the computation of k are way
too big, but we can work modulo p2 (see references).
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Some references

• https://www.crypto101.io
• Introduction to ECC https://bit.ly/2GV19pR
• Video introduction to ECC at CCC
https://bit.ly/2nEmACI

• Smart’s attack on anomalous curves
https://www.hpl.hp.com/techreports/97/
HPL-97-128.pdf

• https://safecurves.cr.yp.to
• Elliptic Curves: Number theory and cryptography (L.
Washington).
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To sum up

• Don’t fear elliptic curves! Advanced stuff can look
difficult, but the basic theory is attainable.

• They are more lightweight than other public key
systems.

• Theoretical attacks can appear based on really
strange properties.

• If you need to implement some ECC, go read:
https://safecurves.cr.yp.to

and its references.
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