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Who am I?

@ Enric Florit

- Maths + CS student at University of Barcelona
- | do number theory and cryptography
- Member of Hacking Lliure
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Introduction
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Public-key cryptography

We want to
- Exchange keys (for symmetric crypto)
- Sign data
- Encrypt things?
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RSA

RSA is easier to understand, it's basic modular
arithmetic:

- Take two large primes p and g, set N = p x g and
p(N)=(p—"1(q—-1).

- Choose e between 1 and ¢(pg) such that
ged(e, ¢(pq)) = 1.

- Compute d =e~" mod ¢(pq).

- pub = (N,e), priv=(p,q,d).
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What are Elliptic Curves?

5/43



The equation of an elliptic curve

An elliptic curve is the set of points (x,y) in the plane
that satisfy the equation

y? = x> + Ax + B,

where A, B are constants' (integer, rational, real,
complex...).

With 4A® 4+ 27B2 # 0
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The graph of an elliptic curve

7
y2:x3—4x+§

If we plot this curve, we have a picture like this:
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The graph of an elliptic curve

y? = x> 4 5x

If we plot this curve, we have a picture like this:
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The graph of an elliptic curve

Y2 =x>—5x+2

If we plot this curve, we have a picture like this:
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There exist other equations

We could also work with other equivalent curves

X4y =1—dx’y?
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Edwards curves with d = 300 (red), d = v/8 (yellow) and
d = —0.9 (blue)?
Zhttps:/ /commons.wikimedia.org/wiki/File:Edward-curves.svg
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The graph of an elliptic curve

We say a point (x,y) is on the curve if it satisfies the
equation y? = x> + Ax + B.
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For example (2, 3) satisfies

Earll=2 11 =9 . s
= y'=x"+1
y? = 32 =9 9/43




Sum of points

We care about elliptic curves because we can add points.

Huh? Coordinate-wise sum? No!

We are going to add pairs of points geometrically.
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Sum of points

1. Pick a pair of points
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Sum of points

2. Draw a straight line through them
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Sum of points

3. Reflect the third point R vertically to get P + Q
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The Point Infinity

We also consider a point at infinity, under the rule

P+oo=P

It is visualized like so
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The Point Infinity

We also consider a point at infinity, under the rule

P+oo=P

It is visualized like so

This means we can subtract points! (P+ Q) + R = oo, and

soR=—(P+ Q). 2



What about adding P + P?
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Sum of points

What about adding P + P? Draw the tangent!

N

3

9
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Addition formulas (not that important!)

To add P = (x;,y1) and Q = (xa, ¥2),

. |fX1 #XQ, then
2
X3 =M —X; — Xz, Y3 = M(X1 — X3) — ¥,
where m = 2=
X2 — X1

. |fX1 = X2 and V1 #yz, then P+ Q = oo.
- If x; = x, and y; # 0, then

X3=M?—2xq, Y3 = m(x: — X3) — ¥
x4+ A

2y
. H:X1:X2 andy1:y2:0,then P+ Q= .
*P+oo=P.

where m =
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Multiplication of points

If nis an integer and P is a point, we may define n x P as
adding P to itself n times.

(We just saw an example of what 2P looks like)

g
:
P
%R
,
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Consider a prime number p.

3Sometimes called GF(p), the Galois Field of p elements, and also
Z/pZ.
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Curves mod p

Consider a prime number p. We can consider our
numbers (point coordinates and constants) on F,, the
Finite Field with p elements.? In practice, we will be
working mod p, or % p.

3Sometimes called GF(p), the Galois Field of p elements, and also
Z/pZ.
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Curves mod p

Consider a prime number p. We can consider our
numbers (point coordinates and constants) on F,, the
Finite Field with p elements.? In practice, we will be
working mod p, or % p. For instance, if our curve is

Y2 = X> 4+ 1242617x + 21985,
then mod 7 it becomes

Y2 =x>4+5x+5,

3Sometimes called GF(p), the Galois Field of p elements, and also
Z/pZ.
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Curves mod p

Consider a prime number p. We can consider our
numbers (point coordinates and constants) on F,, the
Finite Field with p elements.? In practice, we will be
working mod p, or % p. For instance, if our curve is

Y2 = X> 4+ 1242617x + 21985,
then mod 7 it becomes
Y2 =x>4+5x+5,
and now the only points on the curve are

{(1,2),(1,5),(2,3),(2,4),(5,1), (5,6)}

3Sometimes called GF(p), the Galois Field of p elements, and also
Z/pZ.
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Curves mod p

How do you find all points?

In [1l]: print(
[(x,y)
for x in range(0,7)
for y in range(0,7)

if (y**2 - x**3 — 5%x - 5) % 7 == 0]

[(1, 2), (1, 5), (2, 3), (2, 4), (5, 1), (5, 6)]
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Curves mod p

There’s a catch!

If the only values are 0,1,2,...,p — 1, then our curve goes
from looking like this...

[ERY
S
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..to looking like this:*
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Graph of y> = x3 +2x +3 mod 97

“https://bit.ly/2GEZolLL 18/43
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Wow, such big numbers

95% of people cannot solve this!

@ K %
20 B0 Bk
Can you find positive whole values

for °., 83; and %)?

=4
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Wow, such big numbers

95% of people cannot solve this!

q' + & + ® =4
2% B+ ¥R
Can you find positive whole values

for ‘., &5, and b’.’

If you allow for negative values, then you can take:

g =14 b= 1, ¢=1i

19/43



Wow, such big numbers

95% of people cannot solve this!

' + && + b =4
2% 8% ¥l
Can you find positive whole values

for ., S_:&, and b?

The smallest such values are®
a = 15447680210874616644195131501991983748566432566956543170002663489825320203527799¢

b = 36875131794129999827197811565225474825492979968971970996283137471637224634055579

C = 4373612677928697257861252602371390152816537558161613618621437993378423467772036

*https://qr.ae/TW7qSM

19/43


https://qr.ae/TW7qSM

Elliptic Curve Cryptography
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A CRYPTO NERD'S
I MAGINATION -

HIS LAFTOPS ENCRYPTED.
LETS BUILD A MILLION-DOLLAR,
CLUSTER To CRACK\T.

No Goop! TS
uoG6 -BIT ‘RGN

EVIL PLHN
1S FOILED! ™~

Elliptic Curve Cryptography

WHAT WoULD
rl ACTUVALLY HAPPEN:

HIS LAPTOP'S ENCRYPTED.
DRUG HIM AND HIT HIM WITH
THIS $5 WRENCH UNTIL
HE TEMS U5 THE PASSWORD.

GOT IT.

ﬁﬁ

https://xkcd.com/538/
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https://xkcd.com/538/

A CRYPTO NERD'S
I MAGINATION

HIS LAPTOP'S ENCRYPTED.
LETS BUILD A MILLION-DOULAR
CLUSTER To CRACK \T-

NO GooD! [T’
384-hit EBB'

EVIL PLRN
1S FOILED! ™

Elliptic Curve Cryptography

WHAT WOULD
| ACTUALLY HAPPEN:

H'S LAPTOP'S ENCRYPTED.
DRUG HIM AND HIT HIM WITH
THIS $5 WRENCH UNTIL
HE m.LS US THE PASSWORD.

GOT T,

%fﬁ

https://xkcd.com/538/
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Elliptic Curve Cryptography Scheme

The typical scheme for ECC consists of:
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Elliptic Curve Cryptography Scheme

The typical scheme for ECC consists of:

- The parameters of the curve equation

(2 =x>+AX+ B, x> +y? =1—dx¥2.),

- A prime number p,
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Elliptic Curve Cryptography Scheme

The typical scheme for ECC consists of:

- The parameters of the curve equation
(2 =x3+Ax+B, X+ y> =1—dx?~.),
- A prime number p,

- A point P = (xo,Y0) on the curve, called a generator,
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Elliptic Curve Cryptography Scheme

The typical scheme for ECC consists of:

- The parameters of the curve equation
(2 =x3+Ax+B, X+ y> =1—dx?~.),
- A prime number p,
- A point P = (xo,Y0) on the curve, called a generator,

- A number n for which nP = oo, and for all 0 < R < n,
kP # oo (the order of P).
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Elliptic Curve Cryptography Scheme

The typical scheme for ECC consists of:
- The parameters of the curve equation
(2 =x3+Ax+B, X+ y> =1—dx?~.),
- A prime number p,

- A point P = (xo,Y0) on the curve, called a generator,

- A number n for which nP = oo, and for all 0 < R < n,
kP # oo (the order of P).

We want n to be large, and gcd(p,n) = 1.

The first two points are referenced as CURVE, and the
scheme as (CURVE, n, P).
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Elliptic Curve Diffie Hellman

We now have the curve parameters:

V=x+Ax+B
p7P: (X07y0)7n

In this scheme, a private key is an integer d, between 1
and n—1.

The corresponding public key is dxP.
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Key Exchange // ECDH

ALICE BOB
da, daP dg, dgP
(Alice gets dgP) (Bob gets d,P)
ds - (dgP) dg - (daP)

They both have the same point dydgP = (X, V).

Take x, or its hash, as the shared symmetric key.
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We can also perform Digital Signature using a private key
and a random integer (used only once).
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ECDSA

We can also perform Digital Signature using a private key
and a random integer (used only once).

Let h be the hashed message, and choose a random
integer r. Then compute

s =r"(h+dx),
with x = x(rP). The signature is

(h,s,rP).
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ECDSA - Verification

The curve is (CURVE, n, P) Alice’s public key is Q = daP,
and the signature is (h, s, rP). To verify it, compute:

Uy =s"'h modn

U, =S 'x(rP) mod n

V= U1P + UzQ.
If the message is correct, then the verification holds:

V=P + u;Q =5""hP + s 'xdsP = s7"(h + xds)P = rP.
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Attacking ECC
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Discrete Logarithm Problem

Say you encounter a public key Q and a curve
(CURVE, n, P), we want to find k such that

Q= kP

k will be the private key!
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Discrete Logarithm Problem

Say you encounter a public key Q and a curve
(CURVE, n, P), we want to find k such that

Q= kP

k will be the private key!

This is a Discrete Logarithm Problem:

Given P and RP, find k.
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DLP “Attacks”

The are general algorithms to solve a DLP:

- Giant Step-Baby Step (memory intensive)
- Pollard’s Rho and Lambda
- Pohling-Hellman
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MOV Attack

Based on pairings, i.e. mapping pairs of points to a finite
field F,» where the discrete logarithm is easier to

compute.

Still expensive in most cases.
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Anomalous curves

If an elliptic curve has exactly p points over [F,, we say it
Is anomalous.

We don't use them for cryptography, because they can be
attacked in polynomial time.
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The p-adic attack
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We will attack curves mod p having exactly p points (p a
prime, as always).
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The p-adic attack

We will attack curves mod p having exactly p points (p a
prime, as always).

As always, P is the generator, and Q is a public key. We
know there is some Rk with

Q= kP
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The p-adic attack

We will attack curves mod p having exactly p points (p a
prime, as always).

As always, P is the generator, and Q is a public key. We
know there is some Rk with

Q= kP

It would be nice to just do k = 2 but...
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The p-adic attack

We will attack curves mod p having exactly p points (p a
prime, as always).

As always, P is the generator, and Q is a public key. We
know there is some Rk with

Q= kP

It would be nice to just do k = % but.. We can't really
divide points!
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The p-adic attack (background)

If we have a curve £: y?> = x>+ Ax+ B in F, and two
points P and Q, we can [ift it to a curve
E: y2=x*+ Ax + B and two points P and Q with

B

A, B=A modp
P, Q=C

Q modp
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The p-adic attack (background)

If we have a curve £: y?> = x>+ Ax+ B in F, and two
points P and Q, we can [ift it to a curve
E: y2=x*+ Ax + B and two points P and Q with

A=A B=A modp
P=P,Q=Q modp
0:0 H | C
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The p-adic attack (background)

If we have a curve E in rationals, we can consider the
reduction map modulo p, which takes each coordinate
mod p.
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The p-adic attack (background)

If we have a curve E in rationals, we can consider the
reduction map modulo p, which takes each coordinate
mod p.
red, : E(Q) — E(Fp)
ac g
(b’ d) — (ab™',cd™") mod p

o0 H— 00
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The p-adic attack (background)

If we have a curve E in rationals, we can consider the
reduction map modulo p, which takes each coordinate
mod p.

red, : E(Q) — E(Fp)

(g, %) + (ab™',cd™") mod p
o0 = OO

If p divides b or d, then the point goes to oo.
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The p-adic attack (background)

If we have a curve E in rationals, we can consider the
reduction map modulo p, which takes each coordinate

mod p.
red, : E(Q) — E(Fp)
ac g
(b’ d) — (ab™',cd™") mod p
o0 = OO
If p divides b or d, then the point goes to oo.
The map red, is linear (as in linear algebra), meaning
red,(nP) = n x red,(P)
redy(P + Q) = red,(P) + red,(Q).
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The p-adic attack (background)

If a curve E has n points in [, then all points satisfy:

nP = co.
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The p-adic attack (background)

Given a curve E(Q), take the set of points with
denominator divisible by p:°

e={(3.5) €E@ | p"Ib, p¥1d}.

®This is the p-adic bit of the talk!
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The p-adic attack (background)

Given a curve E(Q), take the set of points with
denominator divisible by p:°

E={(33) €E@|p¥Ib, p"Id}.

If Pis in E;, then p divides the denominators of the
point, and so red,(P) = oo (and viceversa).

®This is the p-adic bit of the talk!
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The p-adic attack (background)

Given a curve E(Q), take the set of points with
denominator divisible by p:°

E={(33) €E@|p¥Ib, p"Id}.

If Pis in E;, then p divides the denominators of the
point, and so red,(P) = oo (and viceversa).

We can consider the p-adic logarithm
M: Ey = Z/p*Z

(X,y) = %§ mod p*

®This is the p-adic bit of the talk!
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- Begin with a curve E(F,) with exactly p points, P the
generator and Q a public key.
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The p-adic attack

- Begin with a curve E(F,) with exactly p points, P the
generator and Q a public key.

- Lift £, P and Q to E(Q), P and Q in rational numbers.
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The p-adic attack

- Begin with a curve E(F,) with exactly p points, P the
generator and Q a public key.

- Lift £, Pand Q to E(Q), P and Q in rational numbers.

- LetPy=p-P,Qy=p-Q Then P, € E;, since
red,(P,) = redy(p - P) = p - red,(P) = co. Same with
Q.
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The p-adic attack

- Begin with a curve E(F,) with exactly p points, P the
generator and Q a public key.

- Lift £, Pand Q to E(Q), P and Q in rational numbers.

- LetPy=p-P,Qy=p-Q Then P, € E;, since
red,(P,) = redy(p - P) = p - red,(P) = co. Same with
Q.

- If P, ¢ E,, then
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The p-adic attack (Proof)

We can easily check that k is the private key, i.e. RP = Q:
RA1(P1)=M(Q1) = M(RP1—Q1) = M(kRpP—pQ) = pM(RP—Q) =0
and we can do this because

0o = kP —Q=red,(kP— Q) = KRP—-Q € E,.
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The p-adic attack (Proof)

We can easily check that k is the private key, i.e. RP = Q:
RA(P1)=A(Q1) = M(RP1—Q1) = Mi(kRpP—pQ) = pAi(kP—Q) = 0
and we can do this because

0o = kP —Q=red,(kP— Q) = KRP—-Q € E,.

The numbers involved in the computation of k are way
too big, but we can work modulo p? (see references).
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Some references

- https://www.cryptol01.io
- Introduction to ECC https://bit.1ly/2GV19pR

- Video introduction to ECC at CCC
https://bit.ly/2nEmACI

- Smart’s attack on anomalous curves
https://www.hpl.hp.com/techreports/97/
HPL-97-128.pdf

- https://safecurves.cr.yp.to

- Elliptic Curves: Number theory and cryptography (L.
Washington).

42/43


https://www.crypto101.io
https://bit.ly/2GV19pR
https://bit.ly/2nEmACI
https://www.hpl.hp.com/techreports/97/HPL-97-128.pdf
https://www.hpl.hp.com/techreports/97/HPL-97-128.pdf
https://safecurves.cr.yp.to

To sum up

- Don't fear elliptic curves! Advanced stuff can look
difficult, but the basic theory is attainable.

- They are more lightweight than other public key
systems.

- Theoretical attacks can appear based on really
strange properties.

- If you need to implement some ECC, go read:
https://safecurves.cr.yp.to
and its references.
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