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June 28, 2021





Contents

Introduction vii

1 GL2-type abelian varieties 1
1.1 Abelian varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Jacobians . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Galois representations . . . . . . . . . . . . . . . . . . . . 6
1.1.3 L-functions . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Modular curves and modular forms . . . . . . . . . . . . . . . . . 10
1.2.1 Hecke operators . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.2 L-functions . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 The Eichler-Shimura relation . . . . . . . . . . . . . . . . . . . . 15
1.4 Modularity of GL2-type abelian varieties . . . . . . . . . . . . . . 19

2 Siegel modular forms 25
2.1 Definitions and Fourier coefficients . . . . . . . . . . . . . . . . . 25
2.2 Hecke operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3 Construction of paramodular forms . . . . . . . . . . . . . . . . . 34

2.3.1 Example: the nonlift in level 277 . . . . . . . . . . . . . . 38
2.4 Specialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Paramodularity 47
3.1 The paramodularity conjecture . . . . . . . . . . . . . . . . . . . 47
3.2 Known cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3 Paramodularity of GL4-type abelian varieties . . . . . . . . . . . 50

Bibliography 53

A Legendre reduction 57

B Examples of specialization 59

i



ii



Abstract

This master’s thesis studies the modularity of elliptic curves over the rationals
and two generalizations. The first is a theorem of Ribet based on Serre’s modu-
larity conjecture, asserting that all abelian varieties of GL2-type come from the
Eichler-Shimura construction. The second is the Paramodularity Conjecture,
which says that all abelian surfaces with trivial endomorphism ring have an
associated Siegel paramodular form with coinciding L-function.

We give background on abelian varieties, Galois representations and classi-
cal modular forms, all necessary to state modularity. Further, we explain the
Eichler-Shimura construction and relation. We then study the basic theory of
Siegel modular forms with respect to the paramodular group. The final chapter
gives the statement of the Paramodularity Conjecture, along with a commentary
of what a generalization to GL4-type abelian varieties could look like.

An important part of this project is centered on explicit computation of
Fourier-Siegel coefficients, and special care has been taken to present computa-
tional principles which are scattered across the literature. We also provide the
first public implementation of the specialization method that was used to prove
the first instance of the Paramodularity Conjecture.
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Introduction

Between the 1990s and the 2000s, the following result was proven:

Theorem (Modularity Theorem). All elliptic curves over Q are modular.

This thesis gives an overview of the various topics involved in the Modularity
Theorem and its generalizations to abelian varieties defined over Q, both proven
and conjectural. It will involve studying at least two kinds of objects, which
a priori may seem unrelated: abelian varieties and modular forms. Abelian
varieties are higher-dimensional analogues of elliptic curves, which are algebraic
curves of genus 1. Each abelian variety has an associated meromorphic function,
called its L-function, which encodes arithmetic data about it. On the other
hand, a classical modular form is an holomorphic function on the upper half
plane with some symmetries with respect to a matrix group. Modular forms also
have L-functions, defined in terms of their eigenvalues for some linear operators
called Hecke operators.

We say an abelian variety is modular if its L-function is equal (or more
broadly, if it is related) to the L-function of a modular form. For instance, by
the Modularity Theorem each elliptic curve defined over Q has a corresponding
classical modular form with rational Hecke eigenvalues, and these eigenvalues
coincide with arithmetic data coming from the curve. To extend the collection
of modular abelian varieties, one has to consider modular forms with eigenvalues
lying in some finite extension of Q. This being said, our first goal is to explain
the ingredients of modularity of a class of abelian varieties called of GL2-type.

The correspondence with classical modular forms does not suffice to assert
modularity for all abelian varieties. To add other types of varieties to the list
one introduces Siegel paramodular forms, which are holomorphic functions in a
certain space of 2-by-2 symmetric matrices. These have a theory analogue to
that of classical modular forms, and Hecke operators and L-functions are also
defined. The Paramodularity Conjecture states that certain abelian surfaces
are paramodular, that is, their L-functions coincide with the L-functions of
some paramodular forms. This conjecture is in its early stages, and very few
cases have been proven so far. The second goal of this thesis is to explain the
statement of the conjecture, the current progress, and how one can compute the
necessary Hecke eigenvalues to verify examples of paramodularity.

vii
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Let us outline the ideas of modularity by looking at elliptic curves. An
elliptic curve is given by the projectivization of a Weierstrass equation

E : y2 = x3 +Ax+B, (1)

where A and B lie in some field. It is important that the curve is smooth,
for that, we ask for its discriminant ∆ = 4A3 + 27B2 to be nonzero. We will
be interested in curves defined either over finite extensions K of Q (which are
called number fields), the complex numbers C, or finite fields Fq with q a power
of a prime p.

Elliptic curves are interesting for many reasons, but one of the most promi-
nent is that their points form abelian groups. More specifically, if E is a curve
defined over a field K and E(K) denotes the set of points defined over K sat-
isfying an equation of the form (1) together with the unique point at infinity,
then E(K) is an abelian group. The group law can be described geometrically,
see for example [Sil09, § III.2].

The remarkable theorem of Mordell and Weil [Sil09, § VIII.4] tells us that if
E is defined over Q, then the group E(Q) is finitely generated, so that

E(Q) ∼= T ⊕ Zr (2)

for some finite group T and some nonnegative integer r.
If an elliptic curve E is defined over Q, then via a change of variables we can

ensure that it has the form E : y2 = x3 + Ax + B with A, B integers. We can
then reduce modulo a prime p not dividing the discriminant to obtain a curve

Ẽ : y2 = x3 + Ãx+ B̃

defined over Fp. Clearly the group Ẽ(Fp) is finite. There is a straightforward
way to count the number of points: for each x ∈ Fp, we only need to count the

number of solutions to y2 ≡ c mod p, for c = x3 + Ãx + B̃. This number of
solutions is 0 or 2 with roughly the same probability. Accounting for the unique
point “at infinity”, this means that #Ẽ(Fp) ≈ p+ 1. To measure the deviation
from this approximation, one defines the quantity

ap := p+ 1−#Ẽ(Fp).

When p divides the discriminant of E we can do a similar reduction, but the
resulting curve over Fp will be singular. In that case, we define ap = −1, 0 or
1 depending on the type of singularity that appears. The values ap satisfy the
Hasse bound,

|ap| ≤ 2
√
p,

for all primes p. The L-function of E is then defined as the product

L(E, s) =
∏

p-∆min

1

1− app−s + p1−2s

∏
p|∆min

1

1− app−s
,
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where s is a complex variable and ∆min is the minimal discriminant of E. Using
the Hasse bound, one can prove that this product converges in the right half
plane {s ∈ C | Re(s) > 3

2}. By expanding the product, we obtain an expression
for the L-function as the Dirichlet series

L(E, s) =
∑
n≥1

an
ns

which may remind the reader of other L-functions, such as the Riemann zeta
function. The values an are defined by this equality, in particular, the ap for p
prime remain unchanged. The L-function of E should give us information about
E. This is the content of the weak Birch and Swinnerton-Dyer conjecture, which
predicts that the rank in (2) should satisfy

r = ords=1 L(E, s),

the order of vanishing of L at 1.
A modular form is a holomorphic function

f : H → C

where H is the complex upper half plane,

H = {z ∈ C | Im(z) > 0},

and f satisfies some symmetry conditions with respect to a finite index subgroup
Γ ⊂ SL2(Z), and has some regularity conditions “at infinity”. The precise
definition of the symmetry with respect to Γ is given in Section 1.2, the only
property needed here is the fact that, for all z ∈ H,

f(z + 1) = f(z).

This gives us a Fourier expansion for f , and the regularity conditions ensure
that it has the form

f(z) =
∑
n≥0

an(f)e2πiz.

One defines, for every prime p, certain Hecke operators Tp on the spaces of
modular forms. The Hecke operators can be diagonalized simultaneously, so
that there are eigenforms f such that

Tpf = ap(f)f

for all primes p. If f(z) =
∑
n≥0 ane

2πiz is an eigenform, then its L-function is
defined to be the series

L(f, s) =
∑
n

an(f)

ns
.

This is seen to extend to a meromorphic function on the whole complex plane.
We say an elliptic curve is modular if its L-function equals that of a modular
eigenform.
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To each modular eigenform f (of weight 2) we can always associate an abelian
variety. This will be an elliptic curve if all the Fourier coefficients of f are ratio-
nals, we denote it by Ef . The relation of Eichler and Shimura implies that the
L-functions of f and Ef coincide, making this the first case of modular elliptic
curves. The Shimura-Taniyama-Weil conjecture, now the Modularity Theorem,
asserted that all elliptic curves over Q either appeared with this construction,
or were isogenous to some Ef for an eigenform f .

In particular, if E is an elliptic curve defined over Q, the Modularity Theorem
says that L(E, s) extends to a meromorphic function on all of C. This gives us
the first step to attack the Birch and Swinnerton-Dyer conjecture. In fact, the
proofs of the only known cases of this conjecture (ords=1 L(E, s) = 0 and 1)
rely heavily on the modularity of E.

We can ask for a generalization of the Modularity Theorem where we substi-
tute elliptic curves by a higher-dimensional object. The relevant concept here
is that of abelian varieties, which are projective algebraic varieties whose points
have a group structure defined geometrically. A useful tool to work with abelian
varieties are Jacobians: to each algebraic curve C of genus g, we associate an
abelian variety Jac(C) and a morphism C → Jac(C), such that every morphism
to an abelian variety C → A factors through Jac(C).

Chapter 1 explains the case of abelian varieties over Q of GL2-type, for
which modularity is completely solved. These are varieties whose endomorphism
algebra is a number field of degree coinciding with the dimension of the variety,
which is also the case of elliptic curves. We first explain how to generalize
the L-function to a higher-dimensional variety through Galois representations.
After that, we give the relevant definitions and properties of classical modular
forms. Then, we show how to associate a GL2-type abelian variety to a modular
eigenform, with what is known as the Eichler-Shimura construction. Finally we
present the theorem of Ribet, which completes the construction in the reverse
direction.

The first case of a variety which is not of GL2-type is that of an abelian
surface whose endomorphism ring is isomorphic to Z. This case does not arise
in the Eichler-Shimura construction, and the L-function of such a variety is
given by a product of degree-4 factors which do not split into smaller, degree-2
factors.

To find the corresponding complex analytic functions we need to look at
Siegel modular forms, which are holomorphic functions on the Siegel upper half
space

H2 =
{
M ∈ Matsym2×2 (C) | Im(M) is positive definite

}
,

where Matsym2×2 (C) is the set of 2-by-2 complex symmetric matrices. We also ask
for symmetry with respect to a matrix group and some regularity conditions.

Chapter 2 develops the theory of Siegel modular forms. In particular, we
consider forms with respect to certain groups K(N) of Sp4(Z) called paramod-
ular groups. We first show the properties of their Fourier expansions, and show
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they can be written as

f(Z) =
∑
T≥0

a(T ; f)e2πiTr(TZ)

where T runs over positive semidefinite matrices of a certain level.
On each space of Siegel paramodular forms, several Hecke operators are

defined. An eigenform is a paramodular form f : H2 → C which is an eigenvector
with respect to all Hecke operators. From the eigenvalues of f , we can build
a meromorphic L-function L(f, s). The Paramodularity Conjecture predicts
that, for every abelian surface A/Q with endomorphism ring Z, there is a Siegel
paramodular form fA such that

L(A, s) = L(fA, s).

We also say A is paramodular.
The difficulty in working with Siegel modular forms is twofold: first, con-

structing them can be difficult; second, one needs very large amounts of Fourier
coefficients to compute Hecke eigenvalues, requiring a lot of computational
power. The last part of our second chapter focuses on the method of special-
ization outlined in [PY07] and refined in [Bru+19]. With this method, one can
compute lots of Hecke eigenvalues without having to compute as many Fourier
coefficients.

The first case of the Paramodularity Conjecture that was proven was given
in [Bru+19, Theorem 1.2.1], and is as follows.

Theorem. Consider the Jacobian A = Jac(C) of the curve

C : y2 + (x3 + x2 + x+ 1)y = −x2 − x,

which is an abelian surface of conductor 277. Then A is paramodular, that is,
there is a Siegel paramodular form fA of level 277 such that

L(A, s) = L(fA, s).

We have implemented the method of specialization using Sage, and all the
source code is now available in [Flo21]. This is the first public implementation of
the method. With enough computational resources, it allows for an independent
check of the Paramodularity Conjecture for level N = 277.

We give the current form of the conjecture in Chapter 3. We explain the
current evidence towards its validity, a task involving techniques from represen-
tation theory, computational number theory, and the algorithms explained in
Chapter 2. Finally, we discuss the generalization of the Paramodularity Con-
jecture to abelian varieties of GL4-type.

At the end of this work, we will have given the full expected picture for
abelian surfaces, including the Eichler-Shimura construction in the proven GL2

case, and some of the known instances of the paramodular case.
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Chapter 1

GL2-type abelian varieties

This chapter gives the Eichler-Shimura construction and the statements of the
Modularity Theorem, as well as Ribet’s theorem on GL2-type abelian varieties.
We first give the necessary background on abelian varieties, Jacobians and Ga-
lois representations, and we also give the theory of classical modular forms and
their Hecke operators.

1.1 Abelian varieties

Let k be a field. We say an algebraic variety X over k is a group variety if it
has at a point e ∈ X(k) and two morphisms

i : X → X

m : X ×X → X

inducing a group structure on the points X(k̄) defined over an algebraic closure
k̄ of k. A group variety A is called an abelian variety if it is complete, in that
case, one can prove A is projective. By the rigidity property abelian varieties
are commutative groups. The (affine) group variety GLn(k) is not an abelian
variety for any field k. Elliptic curves, on the other hand, are the simplest
examples of abelian varieties.

We will be interested in abelian varieties over Q. Since Q injects in C it
is convenient to study complex abelian varieties first. Any abelian variety A/Q
has a complex analytic structure, and the morphisms m and i give A(C) the
structure of a complex Lie group.

Definition 1.1. A lattice is a discrete subgroup Λ ⊂ Cg. Given a lattice Λ of
maximal Z-rank 2g, the quotient Cg/Λ is called a g-dimensional complex torus.

Theorem 1.2. Let A/C be a g-dimensional abelian variety. Then there is a
lattice Λ ⊂ Cg such that, as complex Lie groups, A ∼= Cg/Λ.

1



2 CHAPTER 1. GL2-TYPE ABELIAN VARIETIES

However, most complex tori are not abelian varieties, in the sense that they
cannot be embedded in projective space. A complex torus Cg/Λ is an abelian
variety if and only if admits a nondegenerate Riemann form, which we now
define.

Definition 1.3. We say a pairing H : C × C → C is a Hermitian form if it
is linear in the first variable and H(v, w) = H(w, v). We say H is a Riemann
form for Λ if, in addition, ImH takes integer values on Λ × Λ. We say it is
nondegenerate if it is positive definite.

See [HS00, § A.5.2] for an account on the relation between Riemann forms,
ample divisors and projective embeddings.

There is a natural correspondence between Hermitian forms H : Cg×Cg → C
and real bilinear alternating forms E : Cg × Cg → R satisfying E(ix, iy) =
E(x, y). This correspondence is given by the maps

H 7→ E = ImH and E 7→ H(x, y) = E(ix, y) + iE(x, y).

Example 1.4. Let τ be a symmetric g × g matrix such that Im τ is positive
definite (from now on, we write Im τ > 0). Then

H(z, w) = zt(Im τ)−1w

defines a nondegenerate Riemann form with respect to the lattice Zg + τZg.
Therefore Cg/(Zg + τZg) is a complex abelian variety. A basis of the lattice is
given by the columns of the block matrix

(Idg | τ) .

Given a lattice Λ and a nonzero α ∈ C, the homothety Λ 7→ αΛ induces an
isomorphism of complex tori Cg/Λ → Cg/αΛ. In the case of g = 1, we may
use an homothety to ensure that Λ = 〈1, τ〉 with Im(τ) > 0. It follows that
1-dimensional tori are always abelian varieties. These are usually known as
elliptic curves, and we can embed them into P2 via Weierstrass’ ℘ function and
its derivative.

Given a nondegenerate bilinear alternating form E taking integer values on
a lattice Λ, a result of Frobenius says there is a basis of Λ such that the matrix
of E has the form (

0 D
−D 0

)
, (1.1)

where D = diag(d1, . . . , dg), each di is an integer, and di | di+1. Two Riemann
forms H1, H2 are called equivalent if nH1 = mH2 for positive integers m,n.

Definition 1.5. A polarization on an abelian variety A/C is an equivalence
class of Riemann forms on A, defining a particular projective embedding.

If H is a class representative, and setting E = ImH and D = diag(d1, . . . , dg)
as in (1.1), the vector (d1, . . . , dg) is called the polarization type of A. We say
A is principally polarized if D = Id.
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We deal now with morphisms between abelian varieties.

Definition 1.6. Let A and B be abelian varieties defined over k. A morphism
of abelian varieties is a morphism φ : A→ B inducing a group homomorphism
A(k̄)→ B(k̄).

Given two such abelian varieties, Hom(A,B) denotes the group of morphisms
between A and B which are defined over k. If l is an extension of k, the group of
morphisms defined over l is notated Hom(Al, Bl). Similarly, we write End(A),
the endomorphism ring (with addition and composition), and End(Al). In par-
ticular, if k̄ is an algebraic closure of k then End(Ak̄) is the full endomorphism
ring of A. We also write End0(A) for the endomorphism algebra End(A)⊗ k.

Definition 1.7. A morphism of abelian varieties φ : A → B is said to be an
isogeny if:

(i) φ is surjective,

(ii) kerφ is finite,

(iii) dimA = dimB.

Note that any two of these conditions implies the third. The isogeny is defined
over k if φ is given locally by rational functions with coefficients in k.

Being isogenous is an equivalence relation, this will appear several times
in the rest of the chapter: all statements on L-functions, representations and
modularity are always up to isogeny.

If A and B are elliptic curves, then any non-constant morphism of elliptic
curves between them is an isogeny. This is not necessarily true in higher dimen-
sion. However, the image of an isogeny φ : A→ B is an abelian subvariety of B.
Therefore, if we consider simple abelian varieties A and B of the same dimen-
sion (they have no proper abelian subvarieties), then either Hom(A,B) = 0, or
every non-constant morphism A→ B is an isogeny.

For all nonzero integer n, the multiplication-by-n endomorphism [n] : A→ A
is an isogeny. It can be seen that there is an injection Z ↪→ End(A), in particular,
the endomorphism ring of an abelian variety is a ring of characteristic zero.

A variety A defined over the finite field Fp always has an endomorphism σp
(which is an isogeny) called the Frobenius endomorphism. This corresponds to
raising every coordinate of a point to its pth power (for instance, it takes a point
(x, y) on an elliptic curve to (xp, yp)). Being an endomorphism, we have a dual
endomorphism σ∗p satisfying

σp ◦ σ∗p = [p],

the multiplication-by-p endomorphism. The Frobenius σp is used to count points
over Fp, since A(Fp) = ker(σp − [1]).

Before moving on to Jacobians, we mention briefly the notion of conductor
of an abelian variety A/Q. We explain the case of elliptic curves. Any elliptic
curve E/Q has an equation of the form

E : y2 = x3 +Ax+B



4 CHAPTER 1. GL2-TYPE ABELIAN VARIETIES

with A,B integers, and such that the (nonzero) discriminant ∆ = 4A3 + 27B2,
A and B have minimal valuation at all primes. We can then reduce the equation
modulo a prime p, and this will yield a projective curve Ẽ over Fp. We say E

has good reduction at p if Ẽ is nonsingular, otherwise, it has bad reduction.
Depending on the type of singularity that appears we further say Ẽ has multi-
plicative reduction (if the singular point is a node) or additive reduction (if the
singular point is a cusp).

The conductor of E is defined to be the integer N =
∏
p p

fp where

fp =


0 if E has good reduction at p,

1 if E has multiplicative reduction at p,

2 if E has additive reduction at p and p 6∈ {2, 3},
2 + δp if E has additive reduction at p and p ∈ {2, 3}.

We have δ2 ≤ 6 and δ3 ≤ 3, although their precise computation requires quite
more work. Similarly, one can define the reduction of a variety A/Q modulo a
prime by using equations with integer coefficients, and then we can also define
a notion of the conductor. The conductor is an invariant of the isogeny class.

1.1.1 Jacobians

If C/Q is a projective algebraic curve, its C-points have a complex analytic
structure, so C is also a Riemann surface. Given a base point P0 ∈ C, we will
now construct the Jacobian Jac(C) of C, a complex abelian variety with a map
C → Jac(C) sending P0 to the identity of Jac(C). The construction will have
the universal property that given another abelian variety X and a morphism
of complex varieties C → X sending P0 to the identity of X, there will be a
unique morphism of complex abelian varieties Jac(C)→ X making the following
diagram commute:

C Jac(C)

X

The Jacobian Jac(C) is an abelian variety of dimension equal to the genus g
of the curve. If H1(C,Z) is the singular homology of C(C), and Ω1(C) are the
holomorphic differentials on C(C), then

rankZH1(C,Z) = 2g and dimC(Ω1(C))) = g.

We let γ1, . . . , γ2g be a basis of paths on C, and let ω1, . . . , ωg be a basis of
holomorphic differentials. We integrate each differential ωj against each path
γi to obtain the period matrix of C,

Ω =
(

Ωji

)
1≤i≤2g
1≤j≤g

=

(∫
γi

ωj

)
1≤i≤2g
1≤j≤g

.
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Theorem 1.8 (Riemann’s period relations). Choose the paths γ1, . . . , γ2g so
that the intersection property

γi · γj =

{
1, if j = i+ g,

0, otherwise.
(1.2)

is satisfied. Then the period matrix Ω, written by square blocks as Ω = (Ω1 | Ω2),
satisfies {

Ω1Ωt2 = Ω2Ωt1
−
√
−1
(
Ω̄1Ωt2 − Ω̄2Ωt1

)
> 0.

In particular the basis of differentials ω1, . . . , ωg can be chosen so that the period
matrix is of the form

Ω = (Id | τ)

with τ = Ω−1
1 Ω2, Im τ is positive definite, and the column vectors of Ω generate

the lattice LΩ = Zg + τZg.

Definition 1.9. The Jacobian of a Riemann surface C is the complex torus

Jac(C) := Cg/LΩ.

Together with the intersection pairing given by (1.2), it is a principally polarized
abelian variety. If the lattice LΩ is of the form Zg + τZg, then the Riemann
form is equivalently given by H(z, w) = zt(Im τ)−1w̄.

Sometimes is also convenient to define the Jacobian in an equivalent, more
intrinsic way. We inject H1(C,Z) into the dual space Ω1(C)∨ with the map
γ 7→

∫
γ
. Then we can set

Jac(C) := Ω1(C)∨/H1(C,Z). (1.3)

Recall that the divisor group Div(C) of C is the formal abelian group gen-
erated by the points of C,

Div(C) =
⊕
P∈C

Z[P ].

The degree-0 part of the divisor group, Div0(C), is the group of formal sums∑
P∈C nP [P ] such that

∑
P∈C nP = 0. The divisors which are zeros of some

function on C form a subgroup of Div0(C) called the group of principal divisors.
The Picard group Pic0(C) is the quotient of Div0(C) by the principal divisors.

We can embed the curve C in its Jacobian as follows. We fix a base point
P0 ∈ C, and for each point P ∈ C we define the Abel-Jacobi map

P 7→

(∫ P

P0

ω1,· · ·
∫ P

P0

ωg

)
.
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This map is not well-defined, since the integrals are path-dependent. In fact,
given two points P and Q on C and two different paths α and β between them,
we can form a loop on C by concatenating α with the reverse of β, this is
homologous to

∑2g
i=1 niγi ∈ H1(C,Z) for some integers ni. Therefore the map

C → Jac(C) is well-defined. We extend it by linearity to ΦP0
: Div0(C) →

Jac(C).

Theorem 1.10 (Abel-Jacobi). The map ΦP0
is surjective, and its kernel is

exactly the subgroup of principal divisors. Hence, ΦP0 induces a group isomor-
phism Pic0(C) ∼= Jac(C).

Corollary 1.11. If C is a curve of genus g ≥ 1, the map ΦP0
: C → Jac(C) is

an embedding. In particular every elliptic curve is isomorphic to its Jacobian.

Although we won’t need the material, the Jacobian of a curve C defined over
a field of arbitrary characteristic also exists, and there still is an Abel-Jacobi
map C → Jac(C) inducing a bijection Pic0(C) ∼= Jac(C).1 See [HS00, § A.8]
for further detail.

Definition 1.12. A smooth curve C/Q of genus g ≥ 2 is called hyperelliptic if
it admits a double cover C → P1 of the projective line. Such a curve has an
affine equation C : y2 +H(x)y = F (x) for some polynomials H(x), F (x).

All curves C/Q of genus 2 are hyperelliptic. When H(x) = 0 (and so
F (x) is a polynomial of degree 5 or 6), a basis of Ω1(C) is {dx/y, xdx/y}.
If {α1, α2, β1, β2} are loops generating H1(C,Z) (remember that C(C) is topo-
logically a two-holed torus), the period lattice LC of C is spanned by the vectors(∫

γ

dx

y
,

∫
γ

xdx

y

)
=

(∫
γ

dz√
F (z)

,

∫
γ

zdz√
F (z)

)
, γ ∈ {α1, α2, β1, β2},

these are called Abelian integrals. The complex torus C2/LC is the Jacobian of
C, and it comes equipped with the intersection pairing defined above, so Jac(C)
is principally polarized. Every principally polarized abelian surface over C is
either of this form, or it is isomorphic to a product of elliptic curves E1 × E2.

1.1.2 Galois representations

Let Q̄ be a fixed algebraic closure of Q. The group of field automorphisms of Q̄
form the absolute Galois group of Q, which we write from now on GQ := Aut(Q̄).
An automorphism σ ∈ GQ fixes Q point-wise and restricts to an automorphism

σ|F ∈ Gal(F/Q)

for every Galois number field F . This restriction is surjective. If E ⊃ F ⊃ Q is a
tower of number fields, we have σ|F = σ|E |F , so the restrictions are compatible.

1We do not require the field k to be algebraically closed, but we do need C(k) 6= ∅.
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Conversely, every compatible system {σF }F , where F runs over every finite
Galois extension of Q, defines an element of GQ. This description is summarized
with the projective limit

GQ = lim←−
F/Q

finite, Galois

Gal(F/Q).

We endow GQ with the Krull topology by means of a basis of open sets, con-
sisting of

σ · (ker : GQ � Gal(F/Q))

for all σ ∈ GQ and every Galois number field F . For σ = idQ̄, these sets
are the collection of normal subgroups with finite index in GQ. This topology is
equivalent to the one given by the projective limit, if we consider each Gal(F/Q)
to have the discrete topology. As the inverse limit of finite groups, GQ is a
compact topological group.

Let A/Q be an abelian variety of dimension g. Given a positive integer n, the
group of n-torsion points A[n](C) is isomorphic to (Z/nZ)2g, since A(C) ∼= Cg/Λ
for some lattice Λ ⊂ Cg. Note that every point P ∈ A[n](C) is defined over Q̄,
because addition on A is defined by Q-rational maps. Hence GQ acts on A[n] =
A[n](Q̄), and by choosing a Z/nZ-basis of A[n] we obtain a representation

ρ̄ : GQ → Aut(A[n]) ∼= GL2g(Z/nZ).

If n = ` is a prime, we have a representation with values in GL2g(F`). It
is convenient to have a representation over a ring of characteristic zero, this
motivates the use of `-adic numbers.

Recall that given a prime number `, Z` is the ring of `-adic integers, with
elements given by sequences (a1, a2, a3, . . . ) such that an ∈ Z/`nZ and an+1 ≡
an mod `n for all n ≥ 1. Thus it is the projective limit

Z` = lim←−
n

Z/`nZ.

Like GQ, Z` has a topology with a basis of open sets given by x + `nZ` for all
x ∈ Z` and n > 0. This topology is equivalent to the one given by the metric
induced by the `-adic valuation. With it, Z` is a compact topological ring. The
field Q` of `-adic numbers is the fraction field of Z`, its topology is also given
by the `-adic valuation.

The vector spaces Qd` have the product topology, and the group GLd(Q`)
has the induced topology from being a subset of Qd2` . The operations of Q`, Qd`
and GLd(Q`) are all continuous.

We are now ready to build `-adic representations out of abelian varieties.
Let A/Q be an abelian variety, and let ` be any prime. First, note that for
each positive integer n, the multiplication-by-` map [`] : A[`n+1] → A[`n] is
surjective.
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Definition 1.13. The `-adic Tate module of A/Q is defined to be

T`(A) := lim←−
n

A[`n].

We also define V`(A) := T`(A)⊗Q.

From the isomorphism A[`n] ∼= (Z/`nZ)2g, where g = dimA, it is immediate
to see that T`(A) is a Z`-module of rank 2g, and that V`(A) ∼= Q2g

` . The
group GQ acts on each of the A[`n], and the action commutes with the maps
[`]. Hence GQ acts on T`(A), and the action is in fact continuous. This yields
a representation GQ → Aut(T`(A)). By choosing a basis of V`(A), we have the
`-adic representation associated to A,

ρA,` : GQ → GL2g(Q`).

More generally, `-adic Galois representations have the following definition.

Definition 1.14. Let d be a positive integer. A d-dimensional `-adic Galois
representation is a continuous homomorphism

ρ : GQ → GLd(L)

where L is a finite extension of Q`. If ρ′ : GQ → GLd(L) is another such
representation, it is said to be equivalent to ρ, written ρ ∼ ρ′, if there is some
m ∈ GLd(L) such that ρ′(σ) = m−1ρ(σ)m for all σ ∈ GQ.

We write Z̄ for the ring of algebraic integers, that is, all the roots inside Q̄ of
monic polynomials in Z[x]. Given a maximal ideal p of Z̄, its intersection with
Z is a maximal ideal pZ for some prime number p. The field Z̄/p is an algebraic
closure of Fp, denoted as usual by F̄p.

The decomposition group of p is

Dp = {σ ∈ GQ | pσ = p}.

By definition, each σ ∈ Dp satisfies (x+ p)σ = xσ + p for all x ∈ Q̄, inducing a
reduction map

Dp → GF̄p

where GF̄p = Aut(F̄p). This morphism is surjective. An absolute Frobenius
element Frobp is any preimage of the Frobenius automorphism σp ∈ GF̄p sending
x to xp. Such an element is defined up to the kernel of the reduction map, called
the inertia group of p,

Ip = ker
(
Dp → GF̄p

)
= {σ ∈ Dp | xσ ≡ x mod p ∀x ∈ Z̄}.

Theorem 1.15 (Čebotarev). Let S be a finite set of rational primes. For
each maximal ideal p of Z̄ lying over any rational prime p outside S, choose
an absolute Frobenius element Frobp. The set of such elements forms a dense
subset of GQ.
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Given a Galois representation ρ, we usually want to know its values at ab-
solute Frobenius elements. However, each Frobp is only defined up to an inertia
group Ip, so ρ(Frobp) is well defined if and only if Ip ⊂ ker ρ. This motivates
the following definition.

Definition 1.16. Let ρ be a Galois representation and let p be prime. Then ρ
is unramified at p if Ip ⊂ ker ρ for any maximal ideal p ⊂ Z̄ containing pZ.

As long as our representation is unramified at all but a finite number of
primes, Theorem 1.15 implies the values ρ(Frobp) for p over unramified p deter-
mine ρ everywhere by continuity. This situation applies to abelian varieties.

Theorem 1.17. Let A/Q be an abelian variety of conductor N and let ` be
a prime. The `-adic representation ρA,` : GQ → Aut(T`(A)) is unramified at
every prime p - `N .

1.1.3 L-functions

Given an abelian variety A/Q, we consider its associated `-adic representation

ρA,` : GQ → GL2g(Q`).

For any prime p we define the pth Euler factor of A to be the characteristic
polynomial of an absolute Frobenius element Frobp over p,

Lp(A, T ) := det
(
1− TρA,`(Frobp)|T`(A)Ip

)
.

This definition is independent of the choice of a maximal ideal p over p: if p′

is another such ideal, then Frobp is the conjugate of Frobp′ by some automor-
phism σ ∈ GQ, so ρA,`(Frobp) and ρA,`(Frobp′) have the same characteristic
polynomial.

Note that we need the restriction to the Ip-invariant part of T`(A) for
ρ(Frobp) to be well-defined. Theorem 1.17 asserts that T`(A)Ip is the full Tate
module for all p - `NA. In this case, if A is an elliptic curve then one can see
that

Lp(A, T ) = 1− apT + pT 2.

If A is a surface, then Lp is a degree-4 polynomial

Lp(A, T ) = 1− apT + bp2T
2 − papT 3 + p2T 4. (1.4)

The choice of notation will make sense once we consider Siegel paramodular
forms in Chapter 2. In all cases Lp(A, T ) ∈ 1+Z[T ]. We package all the factors
into the L-function of A,

L(A, s) :=
∏
p

Lp(A, p
−s)−1. (1.5)

This function can be seen to converge in a suitable right half plane.



10 CHAPTER 1. GL2-TYPE ABELIAN VARIETIES

Assume A = Jac(C) for some curve C/Q. For a prime p of good reduction for

C (i.e., such that the mod p curve C̃/Fp is smooth), we may define a generating
function

Z(C̃/Fp , T ) = exp

( ∞∑
n=1

#C̃(Fpn)
Tn

n

)
.

By the Weil conjectures [Sil09, Theorem V.2.2], this turns out to be the rational
function

Z(C̃/Fp , T ) =
Lp(A, T )

P (T )

for some integer polynomial P (T ), and all the complex roots αi of Lp satisfy
|αi| ≤ p−1/2. It follows that L(A, s) converges in the right half plane {s ∈ C |
Re(s) > 3

2}.

1.2 Modular curves and modular forms

We consider the complex upper half plane,

H = {z ∈ C | Im z > 0}.

We have an action of the group SL2(R) on H; a matrix γ =

(
a b
c d

)
with

ad − bc = 1 acts as τ 7→ aτ+b
cτ+d . This action is transitive, and is also valid if we

take some matrix γ ∈ GL+
2 (R).

Definition 1.18. Let O(H) be the set of holomorphic functions on H. The
weight-k slash operator of γ ∈ GL+

2 (R) on a function f ∈ O(H) is given by

(f |kγ)(τ) := (det γ)k−1j(γ, τ)−kf(γτ),

where j(γ, τ) := cτ + d for γ =

(
a b
c d

)
.

Let N ≥ 1 be an integer. The principal congruence subgroup of level N is
defined as

Γ(N) := ker(SL2(Z)→ SL2(Z/NZ)),

it is a finite index subgroup of SL2(Z). A subgroup Γ ⊂ SL2(Z) is a congruence
subgroup if it contains some Γ(N).

Definition 1.19. Given any congruence subgroup Γ ⊂ SL2(Z), we say a holo-
morphic function f ∈ O(H) is a modular form of weight k on Γ if

1. f(γτ) = (cτ + d)kf(τ), for all γ =

(
a b
c d

)
∈ Γ,
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2. For any γ ∈ SL2(Z), there exists a positive integer h such that the function
f |kγ(τ) = (cτ + d)−kf(τ) can be written as a series

∞∑
n=0

aγnq
n/h, where q = e2πiτ .

A modular form is called a cusp form if aγ0 = 0 for all γ. The C-vector space of
modular forms of weight k for Γ is denoted by Mk(Γ). The vectors subspace of
cusp forms is denoted by Sk(Γ).

Given a congruence subgroup Γ, its open modular curve is the quotient

YΓ := Γ\H,

the notation coming from the fact that we have a left action of Γ on H. It is
useful to compactify these by adding a finite set of points called cusps: we set
H∗ = H ∪ P1(Q), then Γ acts on P1(Q) and Γ\P1(Q) is finite. We then define
the quotient

XΓ := Γ\H∗,

which is a compact Riemann surface. We call XΓ the modular curve correspond-
ing to Γ; we can apply to it the theory of complex Jacobians. We will mostly
focus on weight-2 modular forms, because they give us the cohomology of the
various modular curves XΓ.

Take a cusp form f ∈ S2(Γ) and let γ =

(
a b
c d

)
∈ Γ. Then

d(γτ) =
a(cτ + d)− c(aτ + b)

(cτ + d)2
dτ =

dτ

(cτ + d)2
,

so 2πif(γτ)d(γτ) = 2πif(τ)dτ , and 2πif(τ)dτ is a Γ-invariant holomorphic
differential. The definition q = e2πiτ implies 2πidτ = dq/q, so ωf is holomorphic
at i∞ because a0(f) = 0, f being a cusp form. Continuing with this reasoning,
one can prove the following.

Proposition 1.20. The map f(τ) 7→ ωf := 2πif(τ)dτ is an isomorphism
between the space S2(Γ) and the space Ω1 (XΓ) of holomorphic differentials on
the curve XΓ.

In particular, the Riemann-Roch theorem [HS00, Theorem A.4.2.1] implies
S2(Γ) has finite dimension equal to the genus g of XΓ.

This identifies the Jac(XΓ) with the quotient S2(Γ)∨/H1(XΓ,Z), it is an
abelian variety of dimension g.

From now on we will only use the congruence subgroup Γ0(N) of level N ,
given by the matrices that become upper triangular modulo N :

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣ (a b
c d

)
≡
(
∗ ∗
0 ∗

)
mod N

}
.
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We shall write X0(N) := XΓ0(N) and J0(N) := Jac(X0(N)) for the correspond-
ing modular curve and its Jacobian. It can be proved that both X0(N) and
Jac(X0(N)) are not only complex varieties, but they can also be defined over
Q.

1.2.1 Hecke operators

The space S2(Γ0(N)) comes equipped with an action of certain linear operators
Tp for each prime p, called the Hecke operators.

To reduce the notation load we set momentarily Γ = Γ0(N). For each matrix
α ∈ GL2(Q)+ we have a corresponding double coset

ΓαΓ = {γ1αγ2 | γ1, γ2 ∈ Γ},

defining a Hecke operator T (ΓαΓ) : M2(Γ) → M2(Γ) as follows. The group Γ
acts on ΓαΓ on the left. By [DS05, Lemmas 5.1.1 and 5.1.2] we can take a finite
set of class representatives {βj} of Γ\ΓαΓ. Then, we can set

T (ΓαΓ)(f) :=
∑
j

f |2βj ,

which is well-defined and independent of representatives. We shall use the par-
ticular case of

Tp := T

(
Γ

(
1 0
0 p

)
Γ

)
for any prime p.

The effect of Tp on the q-expansion of a form f(τ) =
∑
anq

n is given by the
formulas

Tp(f) =

{∑
p|n anq

n/p + p
∑
anq

pn, if p - N,∑
p|n anq

n/p, if p | N.

In particular, Tp maps cusp forms to cusp forms. The definition of Hecke oper-
ators is extended to Tn for arbitrary positive integers n by the formal Dirichlet
series

∞∑
n=1

Tnn
−s :=

∏
p-N

(1− Tpp−s + p1−2s)−1
∏
p|N

(1− Tpp−s)−1. (1.6)

Definition 1.21. The Hecke algebra over Z is the algebra of endomorphisms
of S2(Γ0(N)) generated over Z by the Hecke operators,

TZ = Z[{Tn;n ∈ Z≥1}].

The Hecke algebra TC over C is defined similarly. We remark that both these
algebras are commutative.

By duality, TZ acts on S2(Γ0(N))∨, and in particular it stabilizes the finite
Z-module H1(X0(N),Z). It follows that TZ has also finite Z-rank, and it is in
fact equal to g = dimC S2(Γ0(N)).
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A form f ∈ S2(Γ0(N)) is an eigenform for all of TC if and only if f is an
eigenform for all Hecke operators Tp. If f is also normalized so that a1(f) = 1,
then the identity Tn(f) = an(f)f gives a ring homomorphism

λf : TZ → C.

The image of λf is the subring Z[{an(f) | n ∈ Z≥1}] of C, which is finitely
generated as a Z-module, because TZ is. In particular, the image consists of
algebraic integers.

We define a non-degenerate Hermitian inner product for any two cusp forms
f, g ∈ S2(Γ0(N)),

〈f, g〉 :=

∫
Γ0(N)\H

f(τ)g(τ)dxdy,

called the Petersson scalar product.

Lemma 1.22. Let T0
Z be the Z-submodule of TZ generated by all Tn with n

coprime to N . If T ∈ T0
Z, then it is self-adjoint with respect to the Petersson

scalar product,
〈Tf, g〉 = 〈f, Tg〉,

for all forms f, g ∈ S2(Γ0(N)).

After the lemma, the Spectral theorem plus the fact that all Hecke operators
commute imply the space S2(Γ0(N)) has an orthogonal basis of simultaneous
eigenforms for the Hecke operators Tn, for all n coprime to N . More suc-
cintly, T0

Z acts semi-simply on S2(Γ0(N)); however, this is not the case for TZ:
S2(Γ0(N)) does not decompose into a direct sum of eigenspaces corresponding to
homomorphisms λ : TZ → C. This problem is solved by introducing newforms.
We consider integers M | N and d such that d | NM , and define a level-raising
operator

Vd : S2(Γ0(M))→ S2(Γ0(N)) (1.7)

by

(Vdf)(τ) :=
1

d

(
f
∣∣∣
2

(
d 0
0 1

))
(τ) = f(d · τ).

This operator satisfies VdTn = TnVd for n coprime to d. Note also that the
inclusion of groups Γ0(N) ⊂ Γ0(M) implies the reverse inclusion of spaces
S2(Γ0(M)) ⊂ S2(Γ0(N)).

Definition 1.23. The old subspace is defined as

S2(Γ0(N))old := spanC{Vd(S2(Γ0(M))) : dM | N,M 6= N}.

The new subspace is then defined as the orthogonal complement of S2(Γ0(N))old

in S2(Γ0(N)) with respect to the Petersson scalar product,

S2(Γ0(N))new :=
(
S2(Γ0(N))old

)⊥
.

We say f ∈ S2(Γ0(N))new is a newform if it is a simultaneous eigenform for
TZ and it is normalized so that a1(f) = 1.
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Both the actions of TZ and T0
Z leave the old and new subspaces invariant.

Assume now that f ∈ S2(Γ0(N))new is a nonzero eigenform for all Hecke oper-
ators Tn with n coprime to N . The identity an(f) = λf (Tn)a1(f) plus [DS05,
Theorem 5.7.1] imply that a1(f) 6= 0, and we may further assume f is normal-
ized.

For any positive m ∈ Z we let gm = Tmf − am(f)f , which is an element of
the new space and an eigenform for all Tn with n coprime to N . Then

a1(gm) = a1(Tmf)− a1(am(f)f)

= am(f)− am(f) = 0,

so again by [DS05, Theorem 5.7.1] we have gm ∈ S2(Γ0(N))old. It follows that
gm = 0, so Tmf = am(f)f . This discussion can be completed [AL70] to show
the following.

Theorem 1.24 (Strong Multiplicity One). Let N ≥ 1.

1. If f ∈ S2(Γ0(N))new is a simultaneous eigenform for the action of T0
Z

then f is a simultaneous eigenform for all of TZ.

2. If f ∈ S2(Γ0(N))new and g ∈ S2(Γ0(M))new are both newforms satisfying
ap(f) = ap(g) for all but finitely many primes p, then N = M and f = g.

In particular, the space S2(Γ0(N))new has an orthogonal basis of newforms, and
Tnf = an(f)f for every newform, so that the Fourier coefficients of f are its
Tn-eigenvalues.

Theorem 1.25. There is a direct sum decomposition

S2(Γ0(N)) =
⊕
M |N

⊕
dM |N

Vd(S2(Γ0(M))new).

In other words, the set

B2(N) = {f(dτ) : f is a newform of level M and dM | N}

is a basis of S2(Γ0(N)).

1.2.2 L-functions

Given an eigenform f(τ) =
∑
anq

n ∈ S2(Γ0(N)), its L-function is defined as
the Dirichlet series

L(f, s) :=
∑
n

an
ns
.

By the formal series (1.6), L(f, s) has an expression as an Euler product

L(f, s) =
∏
p-N

(
1− app−s + p1−2s

)−1 ∏
p|N

(
1− app−s

)−1
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The function L(f, s) converges in the right half plane {s ∈ C | Re(s) > 2}.
However, we can do better. Given a function g : R+ → C, its Mellin transform
is the complex function

g̃(s) =

∫ ∞
0

g(t)ts
dt

t
.

We define the completed L-function of f to be

Λ(f, s) = (2π)−sΓ(s)L(f, s),

where Γ(s) =
∫∞

0
ts−1e−tdt is the usual Gamma function satisfying Γ(n+1) = n!

for natural n (note that Γ(s) is the Mellin transform of et). We have the equality

Λ(f, s) =

∫ ∞
0

f(it)ts
dt

t
,

where the right hand-side is the Mellin transform of the function of real variable
f(it) : R+ → C. Moreover, one can prove the functional equation

Ns/2Λ(f, s) = εfN
s/2Λ(f, 2− s)

where εf ∈ {1,−1}. It follows that L(f, s) has an analytic continuation to the
whole complex plane.

1.3 The Eichler-Shimura relation

Let f(τ) =
∑
n≥1 anq

n be a normalized eigenform in S2(Γ0(N)) corresponding
to an algebra homomorphism

λf : TZ → C

given by λf (Tn) = an(f). Let If ⊂ TZ be the ideal

If = ker(λf ) = {T ∈ TZ | Tf = 0}.

We have the Z-module isomorphism TZ/If ∼= Z[{an(f)}n].

Definition 1.26. The number field of f is defined to be the extension of Q
generated by the Fourier coefficients of f ,

Kf := Q({an(f)}).

In particular, the Z-rank of TZ/If is equal to the extension degree [Kf : Q].

Any embedding σ : Kf ↪→ C conjugates f by acting on its coefficients, so
that

fσ(τ) =
∑
n≥1

aσnq
n.

One shows that fσ is another normalized eigenform, and if f is a newform
fσ is also a newform (see [DS05, Theorem 6.5.4] for a proof). It is clear that
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Kf = Kfσ whenever the extension Kf/Q is Galois, and Aut(Kf/Q) divides the
set of newforms of level N in equivalence classes.

The image If (J0(N)) is an abelian subvariety of J0(N) which is stable under
TZ, allowing to make the following definition.

Definition 1.27. The abelian variety associated to f is the quotient

Af := J0(N)/IfJ0(N).

Clearly the ring Z[{an(f)}] ∼= TZ/If acts on Af , so the field Kf injects into
the endomorphism algebra End0(Af,C). It can be shown that Af is defined over
Q, and so Kf also lies in the algebra of endomorphisms of Af defined over Q,
End0(Af ). Additionally, the dimension of Af is equal to the degree [Kf : Q].

By using Theorem 1.25, one proves the following.

Theorem 1.28. The Jacobian J0(N) associated to Γ0(N) is isogenous over Q
to the product ∏

[f ]

A
mf
f

where the product is taken over a set of equivalence class representatives f ∈
S2(Γ0(Mf )) at levels Mf dividing N , and each mf is the number of divisors of
N/Mf .

Proof. See Theorem 6.6.6 and the subsequent discussion in [DS05].

The interest of this construction goes further, because the L-function of each
Af is related to the L-function of the corresponding newform f . To see the idea
why this is true we give an interpretation of the modular curve X0(N), called
the moduli space interpretation: each point on Γ0(N)\H corresponds to an
isomorphism class of elliptic curves with some “level structure”.

We define the following set of enhanced elliptic curves:

S0(N) = {(E,C) | E/C, C is a cyclic subgroup of order N of E}/ ∼,

where ∼ means the equivalence relation of isomorphism of structure: (E,C) ∼
(E′, C ′) whenever there exists an isomorphism E → E′ taking C to C ′. The set
S0(N) is a space of moduli of isomorphism classes of complex elliptic curves.
Sometimes we want to exclude the curves with j-invariants 0 and 1728 (these
correspond to curves with extra automorphisms), in that case, we write S0(N)′.

Proposition 1.29. There is a bijection

ψ0 : S0(N) −→ Γ0(N)\H
[C/Λτ , 〈1/N + Λτ 〉] 7−→ Γ0(N)τ.

The Hecke operator Tp on J0(N) induced by duality is made explicit as an
operator on Div(S0(N)). Indeed, if [E,C] is an enhanced elliptic curve, we have

Tp[E,C] =
∑

D⊂E cyclic of order p

[E/D,C +D].
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Here the quotient E/D corresponds to the image of the unique isogeny (up to
isomorphism) E → E′ with kernel D [Sil09, Theorem III.4.12]. The endomor-
phism Tp : J0(N)→ J0(N) resulting from conjugation with ψ0 is algebraic.

We now look at the reduction of a modular curve mod p, and the moduli
space for elliptic curves over F̄p. We begin by taking a prime p ⊂ Z̄ over p and
we define the moduli space of curves with good reduction at p,

S0(N)′gd =
{

[E,C] ∈ S0(N) | E is defined over Q̄, has good reduction at p,

and j(E) mod p 6∈ {0, 1728}
}
.

Next, we define S̃0(N) to be the moduli space over F̄p: the set of equivalence
classes [E,C] where E is an elliptic curve over F̄p and C is a cyclic subgroup of

order N . The reduction map S0(N)′gd → S̃0(N)′ is surjective.

Theorem 1.30 (Igusa). Let N be a positive intger and let p be a prime not di-
viding N . The modular curve X0(N) has good reduction at p. Letting X̃0(N)/Fp
be the reduction of X0(N) modulo p, we have a commutative diagram

S0(N)′gd X0(N)/Q

S̃0(N)′ X̃0(N)/Fp .

ψ0

ψ̃0

The horizontal arrows are the identification of isomorphism classes in the moduli
spaces with points on the modular curves, while the vertical arrows correspond
to reduction modulo p.

The morphisms in this diagram extend to divisors, so that we have a sim-
ilar diagram with Div0(S0(N)′gd), Div0(S̃0(N)′), Pic0(X0(N)) ∼= J0(N) and

Pic0(X̃0(N)) ∼= J̃0(N).
The Hecke operator Tp on Pic0(X0(N)) reduces modulo p to give a commu-

tative diagram

Pic0(X0(N)) Pic0(X0(N))

Pic0(X̃0(N)) Pic0(X̃0(N)),

Tp

T̃p

We compute T̃p by interpreting X̃0(N) as a moduli space. We take an elliptic
curve E/Q̄ with good reduction at p and let C be a subgroup of order N . We
also let Frobp be an absolute Frobenius element at p. Note that, by definition,

σp(Ẽ) = ẼFrobp , where σp is the Frobenius morphism Ẽ → Ẽ(p).

We let D0 be the kernel of the reduction map E[p]→ Ẽ[p], which is of order
p or p2 (depending on whether Ẽ is ordinary or supersingular modulo p). In
both cases we have:
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Lemma 1.31. For any order p subgroup D of E,

[Ẽ/D, C̃ +D] =

{
[σp(Ẽ), σp(C̃)], if D = D0,

[σ−1
p (Ẽ), [p]σ−1

p (C̃)], if D 6= D0.

Proof. See [DS05, Lemma 8.7.1.].

Summing over the order-p subgroups of E[p], it follows that the Hecke op-
erator T̃p applied to the enhanced curve [Ẽ, C̃] yields

T̃p[Ẽ, C̃] =
∑

D⊂E cyclic of order p

[Ẽ/D, C̃ +D] = (σp + pσ−1
p )[Ẽ, C̃].

By considering the objects X0(N), S0(N)′gd, their Picard groups and their re-
spective reductions, we have the main result of this section.

Theorem 1.32 (Eichler-Shimura Relation). Let p - N . We have T̃p = σp,∗+σ
∗
p,

so that the following diagram commutes:

Pic0(X0(N)) Pic0(X0(N))

Pic0(X̃0(N)) Pic0(X̃0(N)).

Tp

σp,∗+σ
∗
p

Here the superscript and subscript ∗ denote pushforward and pullback from the
Frobenius endomorphism σp of the modular curve X̃0(N) to its Picard group,
as explained in [Sil09, § II.3].

Proof. See [DS05, § 8.7] for further details.

We now apply the Eichler-Shimura relation to a newform f ∈ S2(Γ0(N))
with integer coefficients.

Theorem 1.33. Let f ∈ S2(Γ0(N)) be a normalized eigenform with integer
coefficients, so that Kf = Q and E = Af is an elliptic curve. Then

L(f, s) = L(E, s).

In particular, the L-function of E has an analytic continuation to the whole
complex plane.

Sketch of proof. Let p be a prime not dividing either the level N or the conduc-
tor of the curve NE . The following considerations (and some additional diagram
chasing, showcased in [DS05, Theorem 8.8.2]) show that ap(f) = ap(E).

1. From the isogeny J0(N) ∼
∏
g Ag, the Hecke operator Tp on Ag for each

newform g is given by ap(g).



1.4. MODULARITY OF GL2-TYPE ABELIAN VARIETIES 19

2. The Hecke operator Tp on Pic0(X0(N)) ∼= J0(N) reduces to σp,∗ + σ∗p on

Pic0(X̃0(N)) by the Eichler-Shimura relation.

3. The endomorphism σp,∗ + σ∗p commutes with the projection
∏
g Ag → E

to become σp,∗ + σ∗p on Pic0(Ẽ) ∼= Ẽ.

4. The number ap(E) is precisely the trace of Frobenius on Ẽ, that is,
ap(E) = Tr(σp) = σp,∗ + σ∗p . Note further that Tr(σp) = Tr(ρE,`(Frobp))
for any prime ` 6= p and any absolute Frobenius element at p.

The equality for the remaining primes p | NEN is out of the scope of this
project.

Definition 1.34. We say an elliptic curve E/Q is modular if it is isogenous
to an elliptic curve Ef coming from a normalized eigenform f ∈ S2(Γ0(N)).
Equivalently, we say E/Q is modular if

L(E, s) = L(f, s)

for some normalized eigenform f ∈ S2(Γ0(N)).

With this result we can give the notion of the representation associated to a
newform f with integer coefficients. Indeed, given such a newform we take its
associated elliptic curve Ef , then the `-adic representation associated to f is

ρf,` = ρEf ,` : GQ → GL2(Q`).

If we take the pth Euler factor of L to be

Lp(f, T ) = det
(
1− Tρf,`(Frobp)|T`(Ef )Ip

)
,

then the product
∏
p Lp(f, p

−s) does indeed coincide, in a suitable right half
plane, with the L-function we defined for f .

We will generalize this theorem in the next section.

1.4 Modularity of GL2-type abelian varieties

Recall that the variety Af associated to a newform f has an action by the
ring of integers of the number field Kf , and dimAf = [Kf : Q] = rankZOKf .
Forgetting about the newform for a moment, we let A/Q be an abelian variety
and suppose that K is a number field acting on A up to isogeny over Q,

K ↪→ End0(A).

Then K acts on the tangent space of A at 0, which is a Q-vector space of
dimension dimA. The dimension of this vector space is therefore a multiple of
[K : Q], so that we have [K : Q] | dimA, and in particular [K : Q] ≤ dimA.
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Proposition 1.35. If K is a number field of degree dimA which is contained
in End0(A), then the Tate modules V`(A) associated with A are free of rank two
over K⊗QQ`. Accordingly, the action of GQ on V`(A) defines a representation
with values in GL2(K ⊗ Q`), and every prime λ of OK lying over ` gives a
representation

ρλ : GQ → GL2(Kλ),

where Kλ is the completion of K with respect to the λ-adic valuation.

Proof. We can see A as a complex torus Cd/Λ, where d = dimA. Then Λ is
an OK-module of Z-rank 2d. Since K is a number field of degree d, Λ⊗Q is a
free K-module of rank 2, and so Λ ⊗ Q` is free of rank 2 over K ⊗Q Q`. The
isomorphism T`(A) ∼= Λ⊗ Z` is immediate, and so

V`(A) = T`(A)⊗Q ∼= Λ⊗ Z` ⊗Q ∼= Λ⊗Q`

shows V`(A) is free of rank 2 over K ⊗Q`.
The representation with values in GL2(K ⊗ Q`) follows from choosing a

basis of V`(A). Finally, we can use the isomorphism K ⊗Q` ∼=
∏
λ|`Kλ to get

a 2-dimensional λ-adic representation for each prime λ over `.

Definition 1.36. We say that an abelian variety A/Q is of GL2-type if its

endomorphism algebra End0(A) contains a number field of degree dimA.

We say that an abelian variety A/Q of GL2-type is primitive if it is not
isogenous to some abelian variety Bn with B/Q of GL2-type.

Theorem 1.37. Let A/Q be an abelian variety of GL2-type. Then the following
are equivalent:

(i) A is primitive,

(ii) A is simple over Q,

(iii) The endomorphism algebra End0(A) is a number field whose degree coin-
cides with the dimension of A.

Proof. See [Rib04], Theorem 2.1.

We remark that this does not say End0(AQ̄) could not grow if we consider
endomorphisms defined over an extension of Q, the simplest example of this
behavior is given by a CM elliptic curve.

Going back to modular curves, we now consider the representation associated
to the Jacobian J0(N). We have already used that J0(N) has a model over Q,
and so its `n-torsion is defined over Q̄. This gives a 2g-dimensional `-adic Galois
representation

ρJ0(N),` : GQ → Aut(V`(J0(N))) ∼= GL2g(Q`).
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Since J0(N) has good reduction at any prime p - N , by Theorem 1.17 ρJ0(N),`

is unramified at every prime p - `N . In addition, if p - `N then the reduction
modulo p

J0(N)[`n]→ J̃0(N)[`n]

is an isomorphism. Taking an absolute Frobenius element Frobp over p, the
Eichler-Shimura relation restricted to the `-torsion

J0(N)[`n] J0(N)[`n]

J̃0(N)[`n] J̃0(N)[`n]

∼

σp,∗+σ
∗
p

∼

Tp

implies that Tp equals Frobp +pFrob−1
p on J0(N)[`n], hence ρJ0(N),`(Frobp) sat-

isfies the polynomial equation

det(1−X Frobp |T`(J0(N))Ip) = 1− TpX + pX2 = 0. (1.8)

Now fix some normalized eigenform f ∈ S2(Γ0(N)). Composing the isogeny
J0(N)→

∏
[g]A

mg
g with the projection onto Af , the maps J0(N)[`n]→ Af [`n]

are surjective. Moreover, the projection is defined over Q, so the kernel is stable
under the action of GQ. This allows us to project onto T`(Af ) to get an `-adic
representation of dimension 2d = 2 dimAf ,

ρAf ,` : GQ → GL2d(Q`).

This is the `-adic representation we would associate normally to Af , but the
detour through J0(N) will be useful shortly. First, because ρAf ,` factorizes
through ρJ0(N),`, we obtain immediately that the former is unramified at all
primes p - `N .

What is more, the Eichler-Shimura relation goes through to Af . If we choose
a particular prime λ of Kf over `, the fact that Tp acts as ap(g) on each Ag and
(1.8) imply that ρAf ,λ(Frobp) satisfies the polynomial equation

1− ap(f)T + pT 2 = 0.

But the `-adic representation of Af splits as the product of many 2-dimensional
`-adic representations,

ρAf ,` : GQ → GL2(Kf ⊗Q`) ∼=
∏
λ′|`

GL2(Kf,λ′).

Therefore, by considering the embeddings of Kf in C, the characteristic poly-
nomial of Frobenius det(1− T Frobp |T`(Af )Ip) will split as a product of the d
factors corresponding to each piece of the representation,∏

σ:Kf ↪→C
(1− ap(f)σT + pT 2) =

∏
σ:Kf ↪→C

(1− ap(fσ)T + pT 2).

After doing some more work on the bad primes, one arrives at the following
generalization of Theorem 1.33.
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Theorem 1.38. Let N be a positive integer and let f =
∑
n>0 anq

n ∈ S2(Γ0(N))
be a normalized eigenform. Then the L-functions of Af and f are related by

L(Af , s) =
∏

σ:Kf ↪→C
L(fσ, s).

Definition 1.39. An abelian variety A/Q is said to be modular if it is isogenous
to Af for eigenform f ∈ S2(Γ0(N)). In that case, we have the equality of L-
functions

L(A, s) =
∏

σ:Kf ↪→C
L(fσ, s).

We end this chapter by stating two converse statements. The first one is a
particular case of the second, but we separate them due to historical precedence.

Theorem 1.40 (Wiles,Taylor-Wiles,Breuil-Conrad-Diamond-Taylor). Let E/Q
be an elliptic curve of conductor N . Then there exists some newform f ∈ S2(N)
with integer coefficients such that

L(E, s) = L(f, s).

Moreover, E is isogenous to the elliptic curve Ef obtained by the Eichler-
Shimura construction.

The class of GL2-type abelian varieties is the target of the generalized version
of this result. However, we have made our construction of the varieties Af only
for modular forms with respect to groups Γ0(N). In this case, the field Kf is
always totally real [Rib04, Lemma 3.4], and there are GL2-type varieties whose
endomorphism algebra is a CM field (an imaginary quadratic extension of a
totally real field). For those, one needs to consider modular forms with respect
to the groups

Γ1(N) =

{(
a b
c d

)
≡
(

1 ∗
0 1

)
mod N

}
,

and some details in our theory have to be completed by introducing characters of
the group (Z/NZ)×. Ribet [Rib04] proved the modularity theorem for GL2-type
varieties:

Theorem 1.41 (Ribet). Let A be an abelian variety over Q of GL2-type. As-
suming Serre’s conjecture on representations of GQ, there is a newform f ∈
S2(Γ1(N)) such that

L(A, s) =
∏

σ:Kf ↪→C
L(fσ, s),

and moreover A is isogenous to the factor Af of Jac(X1(N)) obtained by the
Eichler-Shimura construction.

This became an unconditional result with the proof of Serre’s modularity
conjecture by Dieulefait [Die07] and Khare and Wintenberger [KW09a; KW09b].
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A good survey on the various conjectures on modularity of representations can
be found in [DS05, § 9.6].

We are now interested in abelian varieties over Q which are not of GL2-type.
The simplest case we have to look at is that of a surface A/Q with

End(A) = Z.

The remaining two chapters propose a substitute for the classical, one-variable
modular forms.
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Chapter 2

Siegel modular forms

We now give the theory of Siegel modular forms with respect to the paramod-
ular group. We have tried to parallel the exposition of Section 1.2 on classical
modular forms, and many concepts follow a perfect analogy. However, we have
not given the details of level-raising operators and newforms, since we do not
need them for the purposes of the current project.

The second part of the chapter gives details on the construction of paramod-
ular forms through theta blocks and the Gritsenko lift. We give the example
of the nonlift of level 277. Finally, we explain the specialization method to
compute Hecke eigenvalues given in [Bru+19].

2.1 Definitions and Fourier coefficients

Definition 2.1. The Siegel upper half space is the matrix space

H2 = {Z ∈ Matsym2×2 (C) | Im(Z) > 0}

where Im(Z) > 0 means that the imaginary part of Z is positive definite as a
real n× n symmetric matrix.

We will sometimes write H1 = H to distinguish the upper half plane from
H2. The real symplectic group of genus n is given by

Sp2n(R) = {M ∈ GL2n(R) |MTJM = J},

where J is the block matrix

(
0 In
−In 0

)
. A short computation shows that

Sp2(R) = SL2(R). We will focus on the genus-2 case, Sp4(R). The symplectic
group Sp4(R) acts transitively on H2 as(

A B
C D

)
〈Z〉 = (AZ +B)(CZ +D)−1,

25
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where

(
A B
C D

)
∈ Sp4(R). A slightly larger group is the general real positive

symplectic group,

GSp+
4 (R) = {M ∈ GL4(R) |MTJM = µ(M)J, µ(M) > 0}.

The number µ(M) is called the multiplier of M , it satisfies µ(M) = det(M)1/2.
We define Sp4(Q) and GSp+

4 (Q) in a similar manner.

Definition 2.2. We denote by O(H2) the set of holomorphic functions on H2.
The weight k slash operator of M ∈ GSp+

4 (R) on a function f ∈ O(H2) is given
by

(f |kM)(Z) := µ(M)2k−3j(M〈Z〉)−kf(M〈Z〉),

where j(M〈Z〉) := det(CZ +D).

Let Γ ⊂ Sp4(R) be a discrete subgroup commensurable with Sp4(Z) (i.e.
such that Γ ∩ Sp4(Z) has finite index in Sp4(Z)).

Definition 2.3. We say that an holomorphic function f : H2 → C is a Siegel
modular form of weight k for Γ if

1. f |kM = f for all M ∈ Γ,

2. For all matrices M ∈ Sp4(Q) and for all Y0 > 0, f |kM is bounded on
{Z ∈ H2 | Im(Z) ≥ Y0}. The inequality Im(Z) ≥ Y0 here means the
matrix Im(Z)− Y0 is positive semidefinite.

In our case, we are interested in the space of paramodular forms, which are
the Siegel modular forms for the paramodular group Γ = K(N), for N ∈ Z≥1.
The paramodular group of level N is the group

K(N) =


Z NZ Z Z
Z Z Z 1

NZ
Z NZ Z Z
NZ NZ NZ Z

 ∩ Sp4(Q).

Example 2.4. An abelian surface A with polarization type (1, N), N ∈ N, can
we written as a complex torus

A ∼= C2/(Z | T )Z4

where (Z | T ) is called the period matrix and T = diag(1, N). The matrix Z is
symmetric and ImZ is positive definite, so Z belongs to the Siegel upper half
space H2. The Riemann form associated to A in this basis is given by the matrix

JN =

(
0 T
−T 0

)
.

The group Sp4(JN ,Z) = {M ∈ Mat4×4(Z) | MJNM
t = JN} is called the

parasymplectic (or paramodular) group, and it is indeed a conjugate of the
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paramodular group K(N). More specifically, we have K(N)t = I−1
N Sp4(JN ,Z)IN ,

where IN = diag(1, 1, 1, N).
The quotient space AN = K(N)tH2 is the coarse moduli space of abelian

surfaces with polarization type (1, N). This generalises the bijection

S0(N)↔ X0(N)

given in Proposition 1.29. Unfortunately, we will not able to push this analogy
further, because we cannot relate the Siegel paramodular forms of our interest
(weight 2) with the cohomology of AN .

As with classical modular forms, we are able to work with Fourier expansions,
which are a major computational tool. We shall prove Koecher’s principle for
Siegel paramodular forms, which gives their Fourier expansion and proves that
we do not need to check the boundedness condition at infinity.

We work with the following set of matrices:

X2(N) :=

{(
n r/2
r/2 Nm

)
| n, r,m ∈ Z

}
.

As usual we let e(τ) = e2πiτ . For 2-by-2 matrices T and Z, we define 〈T,Z〉 :=
Tr(TZ), which is a symmetric bilinear form.

Lemma 2.5. A paramodular form f ∈Mk(K(N)) has a Fourier expansion

f(Z) =
∑

T∈X2(N)

a(T ; f)e(〈T,Z〉).

Proof. Given any real symmetric matrix S, the block matrix

MS =

(
I2 S
0 I2

)

belongs to Sp4(R). If we take S =

(
1 1
1 1

N

)
, then MS ∈ K(N), so for all Z ∈ H2

we have f(Z + S) = f(Z). Letting Z =

(
τ z
z ω

)
, the Fourier expansion of f

will have terms of the form ae2πi(nτ+rz+Nmω) with n, r,m ∈ Z, and the form in
the exponent can be expressed by the trace

〈T,Z〉 = Tr(TZ), T =

(
n r/2
r/2 Nm

)
∈ X2(N).

The set of matrices X2(N) is fairly intractable, and storing Fourier coef-
ficients of a given modular form without further simplification would be in-
efficient. To be able to perform computations, we introduce an invariance of
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coefficients borrowing from the theory of binary quadratic forms. We say a
matrix (

a b/2
b/2 c

)
∈M2(R)

representing a quadratic form ax2 + bxy + cy2 is Legendre reduced if 0 ≤ b ≤
a ≤ c. Let

Γ0
±(N) =

{(
a Nb
c d

)
∈ GL2(Z)

}
act on X2(N) by T [U ] = U tTU , so that GL2(Z) = Γ0

±(1) acts on X2(1).

Lemma 2.6. Given a matrix T ∈ X2(N), there is a unique Legendre reduced
matrix T̃ ∈ X2(1) and some U ∈ GL2(Z) such that T [U ] = T̃ . Moreover, there
is an algorithm to determine whether two definite matrices T, S ∈ X2(N) are in
the same Γ0

±(N)-orbit.

Proof. The first statement is Theorem 2.8 in [Cox89], modified to allow equiv-
alence up to integral matrices of determinant −1. Algorithm 1 in Appendix A
computes the Legendre reduced form of T .

For the second statement, we let GL2(Z) act on X2(1)×P(Z/NZ) as (T, v) 7→
(T [U ], U−1v). We can identify X2(N) with

X2(N)×
{(

0
1

)}
⊆ X2(1)× P(Z/NZ),

which is invariant under the action of Γ0
±(N).

Therefore, (T, (0, 1)t) and (S, (0, 1)t) are in the same GL2(Z)-orbit if and
only if T and S are in the same Γ0

±(N)-orbit. Given S, T ∈ X2(N), we reduce

(T, (0, 1)t) and (S, (0, 1)t) with algorithm A.1 to obtain (T̃, u) and (S̃, v) respec-
tively, with T̃ and S̃ Legendre reduced. By the uniqueness of the reduced form,
S and T are in the same Γ0

±(N)-orbit as long as S̃ = T̃ and u = Mv for some
M ∈ AutZ(T ). The automorphism group of T is computable and finite as long
as T is definite, so we indeed have the claimed algorithm.

It is worth noting that given a pair (T, v) ∈ X2(1) × P(Z/NZ) with both
components of the vector v coprime and T Legendre reduced, we may take a
matrix U ∈ GL2(Z) with v as its second column, and then T [U ] will be a matrix
in X2(N).

Lemma 2.7. Let f ∈ Mk(K(N)). For all T ∈ X2(N) and U ∈ Γ0
±(N),

a(T [U ]; f) = det(U)ka(T ; f).

Proof. For any U ∈ Γ0
±(N) the block matrix

(
U−1 0

0 U t

)
is in K(N), so set-

ting U∗ = (U−1)t we have f(Z[U∗]) = det(U)kf(Z). Looking at the Fourier
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expansion,

f(Z[U∗]) =
∑

T∈X2(N)

a(T ; f)e(Tr(TU−1ZU∗)) =
∑

T∈X2(N)

a(T ; f)e(Tr(U∗TU−1Z))

=
∑

T∈X2(N)[U ]

a(T [U ]; f)e(〈T,Z〉) = det(U t)kf(Z)

= det(U)k
∑

T∈X2(N)

a(T ; f)e(〈T,Z〉).

This shows that a(T [U ]; f) = det(U)ka(T ; f) for any T ∈ X2(N) and U ∈
Γ0
±(N).

Corollary 2.8. Let D be a positive integer and f ∈Mk(K(N)). Then the set

{a(T ; f) | T ∈ X2(N) positive definite with det(2T ) = D}

is finite.

Proof. Let T ∈ X2(N) with det(2T ) = D and let T̃ be the Legendre reduced
form of T . According to Lemma 2.6, the Γ0

±(N)-orbit of T is represented by

at least one element of {T̃} × P(Z/NZ), and by Lemma 2.7 this bounds the
number of possible values of a(T ; f).

Proposition 2.9 (Koecher principle). A paramodular form f ∈M2(K(N)) has
a Fourier expansion of the form

f(Z) =
∑
T≥0

a(T ; f)e(〈T,Z〉),

where T runs over positive semidefinite symmetric matrices in the set X2(N).
In particular, f(Z) is bounded in every region {Z ∈ H2 | Y = Im(Z) ≥ Y0 > 0}.

Proof. We have already seen that f has a Fourier expansion

f(Z) =
∑

T∈X2(N)

a(T ; f)e(〈T,Z〉).

We only need to show that this sum concerns only those T which are positive
semidefinite. We use the invariance a(T [U ]; f) = a(T ; f) for U ∈ Γ0

±(N). If
a(T ; f) is not zero, then for any symmetric positive definite Y the series∑

S

e−2π〈S,Y 〉,

where S ranges through all the different matrices S = T [U ] for U ∈ Γ0
±(N),

must converge. We shall show that this series diverges for Y = I2 if T is not
positive semidefinite. In this case there is a vector g = (a, b) ∈ Z2 with coprime
coordinates such that T [g] < 0. After changing g by (1 + kaN, kbN) for a
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suitable integer k, we can also assume that gcd(a,N) = 1. Hence there is a
matrix

U =

(
a Nx
b y

)
∈ Γ0
±(N)

such that T [U ] =

(
n r/2
r/2 Nm

)
satisfies n < 0. Now for any

V =

(
1 Nx
0 1

)
∈ Γ0
±(N)

the matrix S = T [V ] satisfies 〈S, I2〉 = Tr(S) = nN2x2 + rNx + n + Nm. We
can let x vary, and in particular 〈S, I2〉 → −∞ as x→∞. Therefore

e−2π〈S,I2〉 →∞ for x→∞,

and the series has to diverge. It follows that a(T ; f) = 0 whenever T is not
positive semidefinite.

The three lemmas prior to the Koecher principle give us the proper way of
storing Fourier coefficients of a given form f . If we want to store the coefficients
a(T ; f) with det(2T ) in a given range, we only have to store finitely many of
them, corresponding to matrices representing the finitely many Γ0

±(N)-orbits in
X2(N) with this determinant bound.

Definition 2.10. We define the Siegel map Φ : Mk(Γ)→ O(H1) by

Φ(f)(z) = lim
λ→+∞

f

(
z 0
0 iλ

)
.

We say that f vanishes at the cusps if for all matrices M ∈ Sp4(Q), Φ(f |kM) =
0.

The space Sk(Γ) of cusp forms is precisely the set of f ∈Mk(Γ) that vanish
at the cusps. The space of paramodular cusp forms of weight k and level N is
Sk(K(N)) ⊂Mk(K(N)).

If T ∈ X2(N) is a positive semidefinite matrix with lower right entry equal

to zero, then it needs to be of the form T =

(
t 0
0 0

)
. From the limit

lim
t→∞

e(〈T,
(
z 0
0 it

)
〉) = 0

one concludes

Φ(f)(z) =
∑
t≥0

a

((
t 0
0 0

)
; f

)
e(tz).

Applying this fact to f |kM for all M ∈ Sp4(Q) one proves the following.
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Proposition 2.11. Let f be a paramodular form. Then f is a cusp form if and
only if its Fourier expansion reads

f(Z) =
∑
T>0

a(T ; f)e(〈T,Z〉),

this is, T > 0 whenever a(T ; f) 6= 0.

We end this section by mentioning certain weights and levels for which all
paramodular forms are cuspidal, we are interested in the particular case of
weight k = 2. Consider the map

ι : H×H → H2

(τ, ω) 7→
(
τ 0
0 ω

)
,

which takes any form f ∈Mk(K(N)) to ι∗f ∈Mk(SL2(Z))⊗Mk(SL2(Z))|k
(
N 0
0 1

)
by precomposition. For k = 2 or k odd the space Mk(SL2(Z)) is zero, so
ι∗(Mk(K(N)) = 0. Hence the Siegel map Φ is zero on all of Mk(K(N)). By
extending this idea to consider all the cusps, [PSY17] prove the following.

Proposition 2.12. Let N be a squarefree positive integer, and let k be a positive
integer. If k = 2 or k is odd then M2(K(N)) = S2(K(N)). If k = 4, 6, 8, 10, 14
then for all f ∈Mk(K(N)), f ∈ Sk(K(N)) if and only if a(0; f) = 0.

2.2 Hecke operators

To simplify the notation we let Γ = K(N). For each matrix M ∈ GSp+
4 (Q) we

have a corresponding double coset

ΓMΓ = {G1MG2 | G1, G2 ∈ Γ}

with which we define a Hecke operator

T (ΓMΓ) : Mk(Γ)→Mk(Γ)

as follows. The group Γ has a left action on ΓMΓ, so we can take representatives
Mj for the left cosets of Γ\ΓMΓ so that ΓMΓ =

⊔
j ΓMj . Provided that this

disjoint union is finite, we define

f |kT (ΓMΓ) =
∑
j

f |kMj .

This action is well-defined and it depends only on the dobule coset. Moreover,
T (ΓMΓ) preserves cusp forms.

For each prime p - N , we define a Hecke operator

T (p) := T (Γ diag(1, 1, p, p)Γ).
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Its double coset decomposes as

Γ diag(1, 1, p, p)Γ (2.1)

= Γ


p 0 0 0
0 p 0 0

1 0
0 1

+
∑

i mod p

Γ


1 0 i 0
0 p 0 0

p 0
0 1

 (2.2)

+
∑

i,j mod p

Γ


p 0 0 0
i 1 0 j

1 −i
0 p

+
∑

i,j,k mod p

Γ


1 0 i j
0 1 j k

p 0
0 p

 . (2.3)

The action of T (p) on the Fourier coefficients a(T ; f) is seen to be

a(T ; f |kT (p)) = a(pT ; f) + pk−2
∑

j mod p

a

(
1

p
T

[
1 0
j p

]
; f

)
(2.4)

+ pk−2a

(
1

p
T

[
p 0
0 1

]
; f

)
+ p2k−3a

(
1

p
T ; f

)
. (2.5)

We define another Hecke operator, also for p - N , by

T1(p2) := T (Γ diag(1, p, p2, p)Γ).

Its coset decomposition and action on Fourier coefficients is described in [Bru+19].
We define two additional operators

T2(p2) := T (Γ diag(p, p, p, p)Γ) = p2k−6id.

B(p2) := p(T1(p2) + (1 + p2)T2(p2)).

If f ∈Mk(Γ) is an eigenform with{
f |kT (p) = ap(f)f,

f |kT1(p2) = a1,p2(f)f,

then f is also an eigenform for B(p2) with eigenvalue bp2(f) = pa1,p2(f) +
p2k−5(1 + p2). Roberts and Schmidt [RS06; RS07] assign to f the spinor Euler
factor (also called the spinor Hecke polynomial) at p - N

Qp(f, T ) := 1− ap(f)T + bp2(f)T 2 − p2k−3ap(f)T 3 + p4k−6T 4. (2.6)

If f has integral Fourier coefficients, then Qp(f, T ) ∈ 1 + TZ[T ]. The coef-
ficients of Qp(f, T ) justify the choice of notation for the Euler factors Lp in
equation (1.4). These factors come from associating a system of compatible
Galois representations ρf,` : GQ → GSp4(Q̄`) to f , see for example [Bru+19,
Section 4.3].

As in the classical modular case, paramodular forms have a strong multiplic-
ity one theorem. This means that an eigenform f ∈ Sk(K(N)) is determined
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by all but a finite number of its Hecke eigenvalues, as is proven in [Sch18, The-
orem 2.6].

However, it is unclear how to recover the Fourier coefficients of f from its
Hecke eigenvalues, something that would be immediate for classical modular
forms (see Theorem 1.24). Using equation (2.4) to build a linear system seems
futile at first, since it should lead to an ever growing amount of variables.
Nonetheless, we can restrict to the case where most terms in the expression
vanish to obtain some simple relations between infinitely many coefficients.

Proposition 2.13. Let f ∈ Sk(K(N)) be a Hecke eigenform with Fourier ex-
pansion

f(Z) =
∑
T>0

a(T ; f)e(〈T,Z〉).

Fix T =

(
n r/2
r/2 Nm

)
with determinant ∆, and let p be a prime not dividing

Nm. Let K = Q(
√
−∆).

(i) If p is inert in K, then

a(pT ; f) = apa(T ; f),

where ap is the eigenvalue of f for T (p).

(ii) If p is ramified in K then there is a single integer 0 ≤ a < p such that

a(pT ; f) = apa(T ; f)− pk−2a

(
1

p
T

[
1 0
a p

]
; f

)
.

(iii) If p is split in K then there are two distinct integers 0 ≤ a < b < p such
that

a(pT ; f) = apa(T ; f)− pk−2

(
a

(
1

p
T

[
1 0
a p

]
; f

)
+ a

(
1

p
T

[
1 0
b p

]
; f

))
.

In particular a(T ; f) determines infinitely many Fourier coefficients of f .

Proof. We consider equation (2.4), which also equals apa(T ; f). The last two
terms are forced to be zero, because p - Nm. For any j,

T

[
1 0
j p

]
=

(
n+ jr + j2Nm p r2 + jpNm
p r2 + jpNm p2Nm

)
,

so a

(
1
pT

[
1 0
j p

]
; f

)
can only be nonzero if p divides n + jr + j2Nm. Again

since p - Nm, this will happen exactly when j is a root mod p of the polynomial
PT (X) = NmX2 + rX + n. This polynomial has 0, 1 or 2 roots mod p when p
is inert, ramified or split in Q[X]/PT (X). This is precisely the field K, because
PT (X) has discriminant r2 − 4Nmn = −det(2T ) = −4∆.
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We conclude the section with a comment on level-raising and newforms.
Given any integer N > 1, the matrix

1
1/N

−1
N


lies in K(N) and no other paramodular group. This means that, even if
N |M , there is no inclusion between the groups K(N) and K(M), and hence a
paramodular form of level N is not necessarily a paramodular form of level M .
Roberts and Schmidt [RS06] give level-raising operators

ηp :Mk(K(N))→Mk(K(Np2)),

θ′p :Mk(K(N)) −→Mk(K(Np)),

θp :Mk(K(N)) −→Mk(K(Np)),

which are defined in terms of matrix actions and preserve cusp forms. One can
define a Petersson scalar product, which allows for a definition of old and new
subspaces in terms of the product and the images of ηp, θ

′
p and θp for all primes

p. A newform is then defined as a cusp form in the new subspace which is an
eigenform with respect to all Hecke operators.

Thanks to the fact that there are no Siegel modular forms of level 1 [Fre83,
Satz 3.15], all forms in prime level are new. This will be enough when we give
the example in level 277 for its later usage with paramodularity.

2.3 Construction of paramodular forms

The Fourier expansion of a paramodular cusp form f ∈ Sk(K(N)),

f

(
τ z
z ω

)
=

∑
T∈X2(N),T>0

a(T ; f)e

(
〈T,
(
τ z
z ω

)
〉
)

can be rearranged as a Fourier-Jacobi expansion, by setting q = e(τ), ζ = e(z),

f

(
τ z
z ω

)
=

∞∑
m=1

fm(τ, z)e(Nmω),

fm(τ, z) =
∑

n,r∈Z,4Nnm>r2
a

((
n r/2
r/2 Nm

)
; f

)
qnζr.

For fixed τ each fm is a Jacobi function giving a projective embedding of the
elliptic curve C/〈1, τ〉. For fixed z, they are modular forms of weight k for certain
congruence subgroups of SL2(Z). These observations motivate the definition of
Jacobi forms.
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Define the parabolic subgroup Γ∞ of Sp4(Z) as

Γ∞ = Sp4(Z) ∩


∗ 0 ∗ ∗
∗ ∗ ∗ ∗
∗ 0 ∗ ∗
0 0 0 ∗

 , ∗ ∈ Z.

Definition 2.14. A level one Jacobi form of weight k ∈ 1
2Z, index m ∈ Q and

character χ : Γ∞ → C, denoted φ ∈ Jk,m(χ), is a holomorphic map

φ : H1 × C→ C
(τ, z) 7→ φ(τ, z)

such that, if φ̃ : H2 → C is defined by φ̃(Ω) = φ(τ, z)e(mω) for Ω =

(
τ z
z ω

)
,

we then have:

1. For each γ ∈ Γ∞, φ̃|kγ = χ(γ)φ̃, and

2. φ(τ, z) =
∑
n≥0, r∈Z c(n, r)q

nζr, where c(n, r) = 0 unless 4mn− r2 ≥ 0.

If c(n, r) = 0 unless 4mn− r2 > 0 then φ ∈ Jcuspk,m (χ) is a cusp form.

Jacobi forms are the main tool to build Siegel paramodular forms. We
will now see how to find them using theta blocks. We will then enunciate
Gritsenko’s lift to show that any Jacobi form can be the first coefficient of a
Siegel paramodular form.

The Jacobi theta function ϑ : H× C→ C is defined either as a theta series

ϑ(τ, z) =

∞∑
n=−∞

(
−4

n

)
qn

2/8ζn/2 =

∞∑
n=−∞

(−1)nq
(2n+1)2

8 ζ
2n+1

2

or as the triple product

ϑ(τ, z) = q1/8ζ1/2
∞∏
n=1

(1− qn)(1− qnζ)(1− qn−1ζ−1).

It is a holomorphic Jacobi form with non-trivial character of weight 1/2 and
index 1/2. For positive a ∈ Z, we denote by ϑa the Jacobi form

ϑa(τ, z) := ϑ(τ, az),

which is of weight 1/2 and index a2/2.
The Dedekind eta function is defined in the upper half-plane by the equation

η(τ) = q1/24
∞∏
n=1

(1− qn).
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If τ ∈ H then |q| < 1, so the product converges absolutely and is nonzero, and
moreover η(τ) is analytic on H. We have η(τ + 1) = eπi/12η(τ), so η24(τ) is
periodic with period 1. Choosing the appropriate branch of z1/2, one shows
that η(−1/τ) = (−iτ)1/2η(τ). This function is used to describe several classical
modular forms, for instance, the unique normalized eigenform f ∈ S2(Γ0(11))
can be written as

f(τ) = (η(τ)η(11τ))2.

Gritsenko, Skoruppa and Zagier [GSZ19] note that for positive integers a
and b, the quotient

Qa,b(τ, z) =
ϑa(τ, z)ϑb(τ, z)ϑa+b(τ, z)

η(τ)

is a holomorphic Jacobi form of weight 1 and index a2 + ab + b2. In addition,
setting g = gcd(a, b), Qa,b is a cusp form if 3g3 | ab(a + b). To generalize this
fact, they introduce the notion of theta blocks.

Definition 2.15. A theta block of length r is a function of the form

ϑa1ϑa2 · · ·ϑarηn,

where n is an integer and each aj is a nonzero integer. A generalized theta block
is a holomorphic function on H× C of the form

ϑa1ϑa2 · · ·ϑar
ϑb1ϑb2 · · ·ϑbs

ηn

where n is an integer and the aj, bj are nonzero integers. A (generalized) theta
block is called holomorphic if it is holomorphic at infinity, i.e., if it is a Jacobi
form. If we drop the holomorphy requirement, such a function is called a theta
function.

Gritsenko, Skoruppa, and Zagier also give a useful criterion to find Jacobi
forms of a given weight and index, which is what we need to generate Siegel
paramodular forms of our target weight and level.

Theorem 2.16 (Gritsenko, Skoruppa, Zagier). Let ` ∈ N, t ∈ Z,

n = (n1, . . . , n`) ∈ Z`, d = (d1, . . . , d`) ∈ N`. Let also n =
∑`
i=1 ni. Define a

meromorphic function TB[t,n,d] : H1 × C→ C by

TB[t,n,d](τ, z) = η(τ)t
∏̀
i=1

ϑdi(τ, z)
ni .

The function TB[t,n,d] is a Jacobi cusp form of weight k and index m if and
only if

1. 2k = t+ n,

2. 2m =
∑`
i=1 nid

2
i ,
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3. t+ 3n ≡ 0 mod 24,

4. For all d ∈ N,
∑
i:d|di ni ≥ 0,

5. The function k
12 +

∑`
i=1 niB̄2(dix) has a positive minimum on [0, 1]. Here

B2 = 1
2x

2 − 1
2x+ 1

12 and B̄2(x) = B2(x− [x]) is the periodic extension of
its restriction to [0, 1].

We consider a special case of theta blocks to ensure conditions 1, 3 and 4
are always satisfied. As before, take ` ∈ N, k ∈ Z, [d1, . . . , d`] ∈ Z`. We define

a theta block of weight k and index m = 1
2

∑`
i=1 d

2
i by

TBk[d1, . . . , d`](τ, z) = η(τ)2k
∏̀
i=1

ϑdi(τ, z)

η(τ)
.

For this to be a Jacobi cusp form it is sufficient that 12 | k + ` and that
k
12 +

∑`
i=1 B̄2(dix) > 0.

Formally, the q-expansion of η can be seen inside the Puiseux series ring of
any ring R of zero characteristic,

R[[q1/∞]] =

∑
n≥n0

anq
n | an ∈ R,n0 ∈ Q

 .

Similarly, we can see the q-ζ-expansion of ϑ inside the ring R[[q1/∞, ζ1/∞]]. This
situation is not ideal for computation, since multiplication in R[[q1/∞, ζ1/∞]] is
relatively slow. To improve on this, we rewrite the Jacobi theta function as

ϑ(τ, z) = q1/8(ζ1/2 − ζ−1/2)
∑
n≥1

(−1)n+1q(
n
2)

n−1∑
j=1−n

ζj .

Then, we note that the fractionary power of q in TBk[d1, . . . , d`] is q
2k−`
24 + `

8 =

q
2k−`+3`

24 = q
2k+2`

24 . By the condition 12 | k+ `, this is actually an integer power.
Now we only need to compute the so-called baby block

∏̀
i=1

(ζdi/2 − ζ−di/2)

in the Puiseux series ring Z[[ζ1/∞]], a finite computation, and the remaining
infinite series can be computed in the Laurent series ring Z((q, ζ)). In order to
compute series up to a certain precision, we can work in the polynomial ring
Z[q, ζ], which has efficient multiplication by the use of 2-dimensional discrete
Fourier transforms.
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Example 2.17. The Fourier expansion of the theta block TB2[2, 4, 4, 4, 5, 6, 8, 9, 10, 14]
is(

1

z33
+
−1

z31
+
−3

z29
+
−1

z28
+

2

z27
+

1

z26
+

3

z25
+

2

z24
+
−1

z22
+
−1

z19
+
−2

z18
+
−3

z17

+
−3

z16
+
−2

z15
+

2

z14
+

2

z13
+

2

z12
+

3

z11
+

1

z10
+

1

z9
+

2

z8
+
−1

z6
+
−1

z5

+
−1

z4
+
−2

z3
+

1

z
− 2 + z − 2z3 − z4 − z5 − z6 + 2z8 + z9 + z10 + 3z11

+ 2z12 + 2z13 + 2z14 − 2z15 − 3z16 − 3z17 − 2z18 − z19 − z22 + 2z24

+ 3z25 + z26 + 2z27 − z28 − 3z29 − z31 + z33

)
q +O(q2).

Having constructed Jacobi forms via theta blocks, it remains to lift them to
Siegel paramodular forms. This is the purpose of the Gritsenko lift. A single
Jacobi form gives us a coefficient in the Fourier-Siegel expansion of a form
in Sk(K(N)). To get further coefficients, we define the level raising operator
Vm : Jcuspk,N → Jcuspk,mN (compare the notation with (1.7)) by

φ|Vm =
∑

n>0,r∈Z

 ∑
δ|gcd(m,n,r)

δk−1c
(mn
δ2

,
r

δ
;φ
) qnζr.

Theorem 2.18 (Gritsenko). Let φ ∈ Jcuspk,N with Fourier series

φ(τ, z) =
∑

n>0,r∈Z
c(n, r;φ)qnζr.

There is a form Grit(φ) ∈ Sk(K(N)) given by

Grit(φ)

(
τ z
z ω

)
=

∑
4mnN−r2>0

(φ|Vm)e(mNω).

The proof can be found in [Gri95]. The Fourier coefficients of φ and Grit(φ)
are related by the equality

a

((
n r/2
r/2 Nm

)
; Grit(φ)

)
= c (n, r;φ | Vm) =

∑
δ|gcd(m,n,r)

δk−1c
(mn
δ2

,
r

δ
;φ
)
.

2.3.1 Example: the nonlift in level 277

As we will see in the next chapter, we are interested in paramodular forms
of weight 2 which are not Gritsenko lifts, which are also called nonlifts. By
working in S4(K(N)) and S8(K(N)), Poor and Yuen [PY15] prove that there
are no nonlifts of weight 2 and level N < 277, and the first nonlift is found in
level N = 277.
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One of its expression is as follows. One defines ten theta blocks,

Ξ1 := TB2[2, 4, 4, 4, 5, 6, 8, 9, 10, 14] Ξ6 := TB2[2, 3, 3, 5, 5, 7, 8, 10, 10, 13]
Ξ2 := TB2[2, 3, 4, 5, 5, 7, 7, 9, 10, 14] Ξ7 := TB2[2, 3, 3, 4, 5, 6, 7, 9, 10, 15]
Ξ3 := TB2[2, 3, 4, 4, 5, 7, 8, 9, 11, 13] Ξ8 := TB2[2, 2, 4, 5, 6, 7, 7, 9, 11, 13]
Ξ4 := TB2[2, 3, 3, 5, 6, 6, 8, 9, 11, 13] Ξ9 := TB2[2, 2, 4, 4, 6, 7, 8, 10, 11, 12]
Ξ5 := TB2[2, 3, 3, 5, 5, 8, 8, 8, 11, 13] Ξ10 := TB2[2, 2, 3, 5, 6, 7, 9, 9, 11, 12].

(2.7)
If we let Gi = Grit(Ξi) for i = 1, . . . , 10, the nonlift in S2(K(277)) is given by
the rational function

f277 := (−14G2
1 − 20G8G2 + 11G9G2 + 6G2

2 − 30G7G10 + 15G9G10

+ 15G10G1 − 30G10G2 − 30G10G3 + 5G4G5 + 6G4G6 + 17G4G7

− 3G4G8 − 5G4G9 − 5G5G6 + 20G5G7 − 5G5G8 − 10G5G9 − 3G2
6

+ 13G6G7 + 3G6G8 − 10G6G9 − 22G2
7 +G7G8 + 15G7G9 + 6G2

8

− 4G8G9 − 2G2
9 + 20G1G2 − 28G3G2 + 23G4G2 + 7G6G2

− 31G7G2 + 15G5G2 + 45G1G3 − 10G1G5 − 2G1G4 − 13G1G6

− 7G1G8 + 39G1G7 − 16G1G9 − 34G2
3 + 8G3G4 + 20G3G5

+22G3G6 + 10G3G8 + 21G3G9 − 56G3G7 − 3G2
4

)
/

(−G4 +G6 + 2G7 +G8 −G9 + 2G3 − 3G2 −G1) .
(2.8)

Poor and Yuen show the following result.

Theorem 2.19. The subspace of Gritsenko lifts of S2(K(277)) has dimension
10, whereas dimS2(K(277)) = 11. The form f277 is a Hecke eigenform with
rational eigenvalues which is not a Gritsenko lift.

2.4 Specialization

The expression (2.8) for f277 as a rational function of Gritsenko lifts creates
an important problem: in order to compute enough coefficients to be able to
find the Hecke eigenvalues, one needs to expand each theta block to very large
exponents, to a point which is hardly tractable with a reasonable amount of
computer resources.

To circumvent this problem, one can specialize the Siegel form to a modular
curve, obtaining a classical modular form. The specialization is done with a
ring homomorphism, allowing us to specialize each individual Gritsenko lift and
reducing the amount of coefficients needed for each q-ζ-series.

Let s ∈ GL2(R) be a symmetric positive definite matrix. The map

M =

(
a b
c d

)
7→Ms =

(
aI2 b · s
c · s−1 dI2

)
defines an injective homomorphism SL2(R) = Sp2(R) → Sp4(R). Moreover,
multiplying s by τ ∈ H1, we obtain a map φs : H1 → H2. This yields the
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specialization morphism φ∗s : O(H2) → O(H1), defined by φ∗s(f)(τ) = f(sτ).
This is trivially a ring homomorphism.

Lemma 2.20. Let f ∈ O(H2) be a holomorphic function, let M ∈ SL2(R), and
let s be a symmetric positive definite matrix. Then

φ∗s(f)|2kM = φ∗s(f |kMs).

Proof. A short computation shows j(Ms〈sτ〉) = j(M〈τ〉)2. Moreover, it is easy
to show that s ·M〈τ〉 = Ms〈sτ〉. Therefore for all τ ∈ H1 we have

(φ∗s(f)|2kM)(τ) = j(M〈τ〉)−2kφ∗s(f)(M〈τ〉) = j(M〈τ〉)−2kf(s ·M〈τ〉)
= j(Ms〈sτ〉))−kf(Ms〈sτ〉) = φ∗s(f |kMs)(τ).

Proposition 2.21. Let s =

(
a b
b c/N

)
be a symmetric positive definite matrix

with a, b, c ∈ Z. The map φ∗s defines a ring homomorphism

φ∗s : M(K(N))→M(Γ0(det(s)N))

from the graded ring M(K(N)) =
⊕∞

k=0Mk(K(N)) of Siegel paramodular forms
of level N , to the graded ring of classical modular forms of level det(s)N . The
map multiplies weights by two and maps cusp forms to cusp forms.

Proof. Let f ∈ Mk(K(N)) be a paramodular form of weight k. For M =(
α β

γ det(s)N δ

)
∈ Γ0(det(s)N), we have

Ms =


α 0 ·N aβ bβ
0 α bβ cβ/N
cγ −bγN δ 0
−bγN aγN 0 ·N δ

 ,

so clearly Ms ∈ K(N). Hence φ∗s(f)|2kM = φ∗s(f |kMs) = φ∗s(f), and φ∗s(f)
is a modular form for Γ0(det(s)N) of weight 2k. If f is a cusp form, then
by definition Φ(f |kMs) = 0. Now for all M ∈ SL2(Z), Ms ∈ Sp4(Q), and
Φ(φ∗s(f)|2kM) = Φ(φ∗s(f |kMs)) is the constant term of the q-expansion of
f |kMs which is zero when f is a cusp form. Hence φ∗s(f) is also a cusp form.

The resulting Fourier expansion of the classical modular form φ∗s(f) will be

(φ∗sf)(τ) =
∑
n≥0

 ∑
T : 〈T,s〉=n

a(T ; f)

 qn. (2.9)

We can generalise the specialization morphism a bit, by taking a 2-by-2 matrix
ζ and setting (φ∗s,ζf)(τ) := f(sτ+ζ). If we let f(Z) =

∑
T>0 a(T ; f)e(〈T,Z〉) ∈
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Sk(K(N)) be a cusp form and set χζ(T ) = e(〈ζ, T 〉, we have

(φ∗s,ζf)(τ) =
∑

n∈Q≥0

 ∑
T : 〈T,s〉

χζ(T )a(T ; f)

 qn.

Note that this lives in a Puiseux series ring. We may use this expression to com-

pute the slash of f with a block upper-triangular matrix

(
A B
0 D

)
∈ GSp+

4 (Q)

with similitude µ = det(AD)1/2,

φ∗s(f |k
(
A B
0 D

)
)(τ) = (f |k

(
A B
0 D

)
)(sτ)

= det(AD)k−3/2 det(D)−kf(AsD−1τ +BD−1)

= det(A)k det(AD)−3/2
∑

n∈Q≥0

 ∑
T : 〈T,AsD−1〉=n

χBD−1(T )a(T ; f)

 qn.

Using s =

(
a b
b c/N

)
as in the previous proposition, one can combine this

action formula with the double coset decomposition (2.1) to yield the following
expression for f |kT (p):

φ∗s (f |k T (p)) (τ) = p2k−3f(psτ) (2.10)

+ pk−3
∑

i mod p

f

((
a/p b
b pc/N

)
τ +

(
i/p 0
0 0

))
(2.11)

+ pk−3
∑

i mod p

 ∑
j mod p

f

((
pa b+ ia

b+ ia (c/N + 2ib+ i2a)/p

)
τ +

(
0 0
0 j/p

))
(2.12)

+ p−3
∑

i,j,k mod p

f

(
sτ/p+

(
i/p j/p
j/p k/p

))
. (2.13)

One can find several cancellations among the terms of these sums [Bru+19,
Proposition 6.3.8], which yields a significant improvement in the complexity of
computing this specialization.

Two steps remain before we can perform the specialization. The first one
is to decide which matrices T will be involved in the computation, which will
obviously depend on the number of desired terms of the classical modular form to
be computed. The second one is to fix the matrix s, which we will do according
to the possible smallest coefficients of a given cusp form.

To solve the first issue we borrow again from [Bru+19]. We define, for a
level N , a real symmetric matrix G, a maximum trace u ∈ R and minimum
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determinant δ ∈ R, the set

S(N,G, u, δ) =
{
T =

(
n r/2
r/2 Nm

)
∈ X2(N)

∣∣∣ 〈T,G〉 ≤ u,det(2T ) ≥ δ,

if m = 0 then n ≥ 0, and if m = n = 0 then r < 0
}
.

Proposition 2.22. Let G =

(
α β
β γ

)
∈ M2(R) be positive definite with deter-

minant ∆ = αγ − β2 > 0. Let

X = 4αumN − α2δ − 4∆(mN)2.

Then the matrices

(
n r/2
r/2 Nm

)
∈ S(N,G, u, δ) satisfy the following bounds.

(a) If m ≥ 1, then

1 ≤ m ≤ α(u+
√
u2 − δ∆)

2∆N
,

−2βmN −
√
X

α
≤ r ≤ −2βmN +

√
X

α
,

r2 + δ

4mN
≤ n ≤ u− βr − γmN

α
.

(b) If m = 0 and n > 0, then

r2 ≤ −δ and 1 ≤ n ≤ u− βr
α

.

(c) If m = n = 0, then
r2 ≤ −δ and r < 0.

The proof is elementary and follows from the inequalities in the definition of
S(N,G, u, δ). One usually needs to interpret the resulting matrices as explained
in Lemma 2.6; given T ∈ S(N,G, u, δ), it is important to keep in mind that we
might not know the coefficient a(T ; f) directly, but we may have it stored as
a(T [U ]; f) for some U ∈ Γ0

±(N).
Now, let f ∈ Sk(K(N)) be a cusp form, and let d be the smallest positive

integer such that there is some T ∈ X2(N) with det(2T ) = d and a(T ; f) is
nonzero, let T0 be such a matrix. Note that there is a lower bound on the
determinant d.

Lemma 2.23. For prime level N , the lowest possible determinant d is

det(2T0) =


3, N ≡ 1 mod 12,

4, N ≡ 5 mod 12,

3, N ≡ 7 mod 12,

8, N ≡ 11 mod 12.
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Proof. If T0 =

(
n r/2
r/2 Nm

)
then det(2T0) = 4Nnm−r2 = d precisely when −d

is a square mod 4N . The result follows from considering the smallest positive
d for which this is possible, we show the cases N ≡ 1, 7 mod 12 (corresponding
to N ≡ 1 mod 3).

We can rule out d = 1 and 2, since −1 and −2 are not squares mod 4. The
next possibility is d = 3, and since −3 ≡ 1 mod 4 is a square we only need to
compute the symbol

(−3
N

)
. Now(

−3

N

)
= (−1)

N−1
2

(
3

N

)
= (−1)(−1)

N−1
2

(
N

3

)
= 1,

so d = 3 is the smallest possible determinant. The other cases are done similarly.

We can now choose the appropriate matrix s. If we set s = (2T0)∗, the
adjoint of 2T0, we will have 〈T0, s〉 = Tr(2T0(T0)∗) = 4 det(T0) = det(2T0) = d.
Because d was minimal, we already know the first term of the q-expansion of
φ∗s(f).

Lemma 2.24. With the current setting for f, d, T0 and s,

φ∗s(f) = a(T0; f)qd +O(qd+1).

Proof. Let T0 =

(
n r/2
r/2 Nm

)
so that

s = (2T0)∗ =

(
2n0 r0

r0 2Nm0

)∗
=

(
2Nm0 −r0

−r0 2n0

)
.

Because d is minimal, we have to compute the matrices in S(N, s, d, d). By

Proposition 2.22, given

(
n r/2
r/2 Nm

)
∈ S(N, s, d, d) we will have

1 ≤ m ≤ 2Nm0(d+
√
d2 − d2

2dN
= m0.

We also need to have X = 4(2Nm0)dmN−(2Nm0)2d−4d(mN)2 = −4dN2(m−
m0)2 ≥ 0, but this can only happen ifm = m0 andX = 0. The second inequality
is

2r0mN

2Nm0
≤ r ≤ 2r0mN

2Nm0
,

so r = r0
m
m0

= r0. Finally, the third inequality

r2 + d

4mN
≤ n ≤ d− (−r0)r − 2n0mN

2Nm0
= n0

yields n = n0. Therefore S(N, s, d, d) = {T0} and the result follows from (2.9).
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Example 2.25. Let f be the nonlift of level N = 277 described in 2.3.1. The
minimal determinant for 277 ≡ 1 mod 12 is d = 3, and indeed for

T0 =

(
1 233/2

233/2 49 · 277

)
we have a(T ; f) = −3 6= 0. Taking s = (2T0)∗ and using the data in [LMFDB,
Siegel modular form Kp.2 PY2 277], we can compute up to 89 coefficients in
the q-expansion of φ∗s(f) ∈ S2(Γ0(3 · 277)), which starts by

φ∗s(f) = −3q3 + 6q6 + 6q9 + 3q12 + 3q15 − 12q18 +O(q21).

The first few exponents might suggest that this is an old form coming from
g ∈ S2(Γ0(277)), so that φ∗s(f)(τ) = g(3τ). However a34(φ∗s(f)) 6= 0, so this is
not the case. Likewise, one sees that φ∗s(f) is not an eigenform.

Appendix B contains other examples of q-expansions which we have com-
puted by specialization of some nonlifts available in [LMFDB, Siegel modular
forms for K(p)].

2.4.1 Implementation

During the realization of this project, we have implemented the method of
specialization, which is capable of computing Hecke eigenvalues for the nonlift
in level 277 from Example 2.3.1, and should be applicable to other eigenforms.
This is, to our knowledge, the first public implementation of the algorithm
described in [Bru+19], and the first one to use Sagemath [Sag21] (the original
code was written in C++). The code can be found on Github [Flo21].

The implementation of the method poses a few challenges, which we out-
line here. As this chapter has shown, there are two ways of computing Hecke
eigenvalues of a Siegel paramodular form. The first one needs having lots of
coefficients of the form explicitly, and uses either the formula in (2.4) or a suit-
able specialization φ∗s. In both cases, the algorithm described in Lemma 2.6 is
needed to compare equivalent symmetric matrices.

With the approach of using the explicit form f277 as given in the LMFDB,
we are able to compute Hecke eigenvalues ap(f277) for primes p up to 23. To go
further, we need to use expression (2.8). We first compute each theta block, and
then the corresponding Gritsenko lifts. We can then specialize each Gritsenko
lift with the formula in (2.10) and combine all the Puiseux series to obtain the
specialized form φ∗s(f277). Since f277 = Q(G1, . . . , G10) is a rational function of
Gritsenko lifts and φ∗s is a ring homomorphism, the specialized form is

φ∗s(f277) = Q(φ∗s(G1), . . . , φ∗s(G10)).

The corresponding series for f277|2T (p) is then

φ∗s(f277|2T (p)) = Q(φ∗s(G1|2T (p)), . . . , φ∗s(G10|2T (p))),

https://beta.lmfdb.org/ModularForm/GSp/Q/Kp.2_PY2_277/
https://beta.lmfdb.org/ModularForm/GSp/Q/Kp/
https://beta.lmfdb.org/ModularForm/GSp/Q/Kp/
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and we only need to compute the first nonzero coefficient of each classical mod-
ular form to divide and obtain the desired eigenvalue. The matrix s is decided
with the discussion so far, taking into account that we do know the first nonzero
coefficient of f277.

To compute the theta blocks, we can multiply the factors for each of them
up to a finite precision in the variable q. By shifting the possibly negative
exponent in ζ (and keeping track of the shift each time we multiply), we may
treat theta blocks and their factors as polynomials in q and ζ and multiply them
via two-dimensional discrete Fourier transforms.

We do that with numpy’s Fast Fourier transform package1. Unfortunately,
the complex-precision of the package limits the scope of our computation, and
we are only capable of computing a2(f), a3(f) and a5(f) correctly. To compute
from a7(f277) onward, we would need to raise the precision of the floating-
point complex numbers, which rapidly multiplies the required execution mem-
ory. With sufficient computing resources, the method should be able to compute
ap(f) for primes p up to at least 200, according to Yuen [Yue21].

1numpy.fft.fft

https://numpy.org/doc/stable/reference/generated/numpy.fft.fft.html
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Chapter 3

Paramodularity

In Chapter 1 we have reviewed the elements of the Modularity Theorem over Q.
We have also seen how the result extends to incorporate modularity for certain
kinds of higher dimensional abelian varieties. As we already mentioned, after
modularity of GL2-type varieties we have run out of classical newforms, so we
have to turn to Siegel modular forms to try and relate them to some remaining
classes of abelian varieties.

The simplest case still to be treated are abelian surfaces A over Q which
have End(A) = Z as its ring of endomorphisms defined over Q. We say they
have trivial endomorphisms.1

3.1 The paramodularity conjecture

We recall some relevant facts from the previous two chapters. If ` is a prime
number and A/Q is an abelian surface, we associate to it an `-adic representation

ρA,` : GQ → GL4(Q`).

If p is another prime and Frobp is an absolute Frobenius element over p, then
the polynomial

Lp(A, T ) = det(1− T Frobp |T`(A)Ip)

is well-defined, and in fact the action of inertia is trivial if p - `NA, where NA
is the conductor of A. We use the collection of all these polynomials to define
the L-function of A,

L(A, s) :=
∏
p

Lp(A, p
−s)−1.

Recall that a Siegel paramodular form f of weight 2 and level N is called a
non-lift if it lies outside the image of the Gritsenko lift

Grit : Jcusp2,N → S2(K(N)).

1N.B. [Bru+19] use the alternative name typical surface to refer to an abelian surface
with End(AQ̄) = Z. For most of the proven cases, these are equivalent because of [Bru+19,
Lemma 4.1.1].

47
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The L-function of an eigenform f ∈ S2(K(N)) with respect to all Hecke opera-
tors is also given as a product of spinor Hecke polynomials

Qp(f, T ) = det(1− Tρf,`(Frobp)|T`(f)Ip),

with the suitable restriction so that the action of inertia is trivial, where

ρf,` : GQ → GL4(Q`)

is the 4-dimensional `-adic Galois representation associated to f [Bru+19, Sec-
tion 4.3]. This takes the form described in (2.6),

Qp(f, T ) = 1− ap(f)T + bp2(f)T 2 − pap(f)T 3 + p2T 4,

which we conveniently used to set the notation for the local Euler factor of an
abelian surface. As explained in Chapter 2, ap(f) and bp2(f) correspond to
the Hecke eigenvalues of f with respect to the operators T (p) and B(p2). The
L-function of f is then

L(f, s) :=
∏
p

Qp(f, p
−s)−1,

and it can be seen to extend meromorphically to the whole complex plane. By
the Čebotarev density theorem (Theorem 1.15), the equality of L-functions is
equivalent to the representations ρA,` and ρf,` being equivalent.

A first version of the Paramodularity Conjecture is as follows.

Conjecture 3.1. Given an abelian surface A/Q of conductor N with End(A) =
Z, there is a weight-2 nonlift Siegel paramodular newform fA ∈ S2(K(N)) with
rational eigenvalues such that there is an equality of L-functions

L(A, s) = L(fA, s).

Brumer and Kramer [BK14] originally gave this statement, along with the
converse one (each cusp form with rational eigenvalues has a corresponding
abelian surface). It was later pointed out that the conjecture was incomplete,
and one should not only consider typical abelian surfaces. A 4-dimensional
abelian variety (also called an abelian fourfold) is said to have quaternion mul-
tiplication, or QM, if its ring of endomorphisms is an order in a quaternion
algebra over Q. Calegari [Cal18] explained the Paramodular Conjecture should
also include them, proposing the following form of the statement.

Conjecture 3.2 (Brumer–Kramer–Calegari). Let AN be the set of isogeny
classes of abelian surfaces A/Q of conductor N with End(A) = Z, let BN be
the set of isogeny classes of QM abelian fourfolds B/Q of conductor N2, and let
PN be the set of weight-2 nonlift Siegel paramodular newforms of level N with
rational eigenvalues, up to nonzero scaling. There is a bijection PN ↔ AN ∪BN
such that

L(X, s) =

{
L(f, s), if X ∈ AN ,
L(f, s)2, if X ∈ BN .
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sage : R.<x> = QQ[ ]
sage : C = Hypere l l i p t i cCurve (−xˆ2−x , xˆ3+xˆ2+x+1)
sage : C. change r ing (GF( 2 ) ) . f r oben iu s po lynomia l ( )
xˆ4 + 2∗xˆ3 + 4∗xˆ2 + 4∗x + 4
sage : C. change r ing (GF( 3 ) ) . f r oben iu s po lynomia l ( )
xˆ4 + xˆ3 + xˆ2 + 3∗x + 9
sage : C. change r ing (GF( 5 ) ) . f r oben iu s po lynomia l ( )
xˆ4 + xˆ3 − 2∗xˆ2 + 5∗x + 25
sage : C. change r ing (GF( 7 ) ) . f r oben iu s po lynomia l ( )
xˆ4 − xˆ3 + 3∗xˆ2 − 7∗x + 49

Figure 3.1: Example of computing local zeta functions for the hyperelliptic curve
C : y2 + (x3 + x2 + x+ 1)y = −x2 − x. Note that the characteristic polynomial
given is det(X − Frobp), which corresponds to X4Lp(A, 1/X) in our notation.

We should mention that such abelian fourfolds have yet to be found, and
to that effect extensive computational searches have been performed with little
success so far.

3.2 Known cases

The first step before conjecturing paramodularity was to gather evidence on
both sides. Perhaps surprisingly, the first pieces of such evidence were results
of nonexistence. On the one hand, Brumer and Kramer [BK14] showed which
odd conductors N < 500 were not possible for a typical abelian surface. On the
other hand, Poor and Yuen [PY15] proved the following result, compatible with
the results of Brumer and Kramer.

Theorem 3.3. For primes p < 600 not in the set {277, 349, 353, 389, 461, 523, 587},
S2(K(p)) is spanned by Gritsenko lifts.

After ruling out surface conductors and paramodular levels spanned com-
pletely by Gritsenko lifts, the next step is to produce candidate surfaces and
nonlifts. For small levels, [LMFDB] contains tables of isogeny classes of abelian
surfaces over Q which are the Jacobian of a genus-2 hyperelliptic curve. We
hinted a way to find nonlifts in Section 2.3.1, and there is a large body of
literature on trying to find them, see for example [PY07], [PY15], [PSY17].

The first few cases of Conjecture 3.1 were proven using a generalized Faltings-
Serre method [Bru+19]. To put it briefly, the method works by comparing a
finite number of traces of Frobenius elements through the representations of the
surface A/Q and the eigenform f .

If we have a surface A/Q given as the Jacobian of a hyperelliptic curve,
A = Jac(C), by the discussion of Section 1.1.3 it is enough to compute the local
zeta function of C at the desired primes. This is implemented in widespread
computer algebra packages; in Sagemath, it can be done via the commands in
Figure 3.1.
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Theorem 3.4. Let C be the curve over Q defined by

C : y2 + (x3 + x2 + x+ 1)y = −x2 − x.

Let A be the Jacobian of C, which has End(A) = Z and conductor 277. Let
f277 ∈ S2(K(277)) be the nonlift Siegel paramodular cusp form of weight 2 and
level 277, unique up to scalar multiple. For all primes p, we have

Lp(A, s) = Qp(f277, s).

In particular L(A, s) = L(f277, s) and A is paramodular.

Proof. See [Bru+19, Section 7.1]. The final step in the proof is to compare the
traces of Frobenius ap(A) and ap(f277) from the Euler factors and the spinor
Hecke polynomials, respectively, for all primes p ≤ 43. For the surface A, this
can be done by counting points of the curve C: if C̃/Fp is the reduction of C
modulo p, it can be shown that

ap(A) = p+ 1−#C̃(Fp).

The values ap(f277) correspond to the Hecke eigenvalues of f277 for T (p), and
they are computed as explained in Section 2.4.

The paper [Bru+19] also establishes the paramodularity of two surfaces of
conductors 353 and 587. Cris Poor and David S. Yuen [PY] keep a running list
of paramodular candidates for levels up to 1000, as well as the cases that have
already been proven.

3.3 Paramodularity of GL4-type abelian varieties

We define a notion of abelian variety that generalizes the situation of surfaces
A/Q with End(A) = Z.

Definition 3.5. We say an abelian variety A/Q is of GL4-type if End0(A)

contains a number field of degree dimA
2 .

The terminology is motivated by the following proposition, which is proven
in exactly the same way as Proposition 1.35.

Proposition 3.6. If K is a number field of degree dimA
2 contained in End0(A),

then the Tate modules V`(A) associated with A are free of rank four over K ⊗Q
Q`. Accordingly, the action of GQ on V`(A) defines a representation with values
in GL4(K ⊗Q`), and every prime λ of OK lying over ` gives a representation

ρλ : GQ → GL4(Kλ).

�



3.3. PARAMODULARITY OF GL4-TYPE ABELIAN VARIETIES 51

We would like to generalize Conjecture 3.1 to GL4-type abelian varieties,
hoping for an analogue of Ribet’s Theorem 1.41, as was already proposed in
[BK14, Conjecture 1.4]. We consider abelian varieties A/Q with real multiplica-
tion, that is, such that their endomorphism ring contains an order O in a totally
real number field K. In that case, we say A has RM by O (or sometimes, by
K).

Given a Siegel paramodular eigenform f ∈ S2(K(N)), we let Kf = Q({ap})
be the number field generated by the Hecke eigenvalues of f . Compare this
definition with that of Kg for a classical modular eigenform g: in that case,
the Fourier coefficients and Hecke eigenvalues coincide whenever the form is
normalized; on the other hand, the field generated by Fourier-Siegel coefficients
of f (as long as they are algebraic) certainly contains the Hecke eigenvalues,
and this definition avoids having to normalize the Fourier-Siegel expansion.

Conjecture 3.1 then generalizes naturally to say that there should be an
abelian variety of GL4-type with RM by OKf with

L(Af , s) =
∏

σ:Kf ↪→R
L(fσ, s).

Conversely, an abelian variety A of GL4-type with RM by OKf should be isoge-
nous to Af for some weight-2 nonlift newform f for K(N).

However, this generalization cannot be the proper one, since in the case
Kf = Q, the current statement of the paramodularity conjecture says we have
to consider QM abelian fourfolds. Being speculative, one possibility could be to
consider varieties of dimension 4[Kf : Q] such that their endomorphism algebra
is a quaternion algebra over Kf .

To consider the case where End0(A) contains a CM field2 of degree dimA
2 ,

and by mirroring [Rib04], one should also take into account Siegel paramodular
forms with nontrivial character, see for example [JR17].

We need to stress the fact that we do not have an “Eichler-Shimura con-
struction” to build an abelian variety from a form f ∈ S2(K(N)). In the case
of classical modular forms, a form g ∈ S2(Γ0(N)) corresponded to a differential
on the modular curve X0(N), from which we had a way to build a quotient of
the Jacobian J0(N). This situation is, unfortunately, unavailable to us.

2A CM field is an imaginary quadratic extension of a totally real field.
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58 APPENDIX A. LEGENDRE REDUCTION

Appendix A

Legendre reduction

Algorithm 1: Legendre reduction.

Input: T =

(
n r/2
r/2 m

)
∈ X2(1)

Output: T̃ ∈ X2(1), U ∈ GL2(Z), v ∈ P(Z/NZ) such that T̃ is
Legendre reduced (0 ≤ r ≤ n ≤ m), T [U ] = T̃ , and
Uv = (0, 1)t.

Let U ← Id, v ← (0, 1)t.
repeat

if m < n then

Let R =

(
0 −1
1 0

)
v ← R−1v
U ← U ·R
T ← T [R]

end
if n ¡ —r— then

Let λ =
⌈
−r/2
n + 1

2

⌉
, R =

(
1 λ
0 1

)
v ← R−1v
U ← U ·R
T ← T [R]

end

until |r| ≤ n ≤ m;
if r < 0 then

Let R = diag(1,−1)
v ← R−1v
U ← U ·R
T ← T [R]

end
return T , U and v.



Appendix B

Examples of specialization

• N = 277, T0 =

(
1 233/2

233/2 13573

)
, a(T0; f277) = −3.

φ∗s(f277) = −3q3+6q6+6q9+3q12+3q15−12q18+3q21−18q24−3q27−6q30+6q33+O(q34).

• N = 349, T0 =

(
1 245/2

245/2 15007

)
, a(T0; f349) = 3.

φ∗s(f349) = 3q3−6q6−6q9+3q12−3q15+12q18−12q21−6q24+9q27+6q30+3q33−6q36+O(q38).

• N = 353, T0 =

(
1 42
42 1765

)
, a(T0; f353) = 2.

φ∗s(f353) = 2q4 − 4q8 − 4q12 − 2q16 − 2q20 + 8q24 + 10q32 − 2q36 +O(q38).

• N = 389, T0 =

(
1 115

115 13226

)
, a(T0; f389) = −2.

φ∗s(f389) = −2q4 + 4q8 + 4q12 + 2q20 − 8q24 + 6q28 − 4q32 − 2q36 +O(q40).

• N = 461, T0 =

(
1 48
48 2305

)
, a(T0; f461) = 2.

φ∗s(f461) = 2q4−2q8−6q12−4q16−2q20+6q24+4q32+4q36+2q40+O(q44).

• N = 523, T0 =

(
1 121/2

121/2 3661

)
, a(T0; f523) = −3.

φ∗s(f523) = −3q3+3q6+3q9+6q12+12q15−3q18−6q24−12q30−6q33−6q36+3q39+O(q42).
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60 APPENDIX B. EXAMPLES OF SPECIALIZATION

• N = 587+, T0 =

(
2 380

380 72201

)
, a(T0; f587+) = 2.

φ∗s(f587+) = 2q8 − 4q16 − 4q24 − 2q32 + 8q48 +O(q50).

• N = 587−, T0 =

(
4 137/2

137/2 1174

)
, a(T0; f587−) = 1.

φ∗s(f587−) = q15 − q30 − 3q45 − q60 +O(q71).
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