Abelian varieties that split modulo all but finitely many primes Enric Florit Universitat de Barcelona Décimas Jornadas de Teoría de Números 10 de julio de 2024 Let k be a number field, A/k an abelian variety with $A_{\bar k}$ simple, $\Sigma_A = \{ \text{primes of good reduction for } A \}$. For $\mathfrak{p} \in \Sigma_A$, let $A_{\mathfrak{p}} := A \mod \mathfrak{p}$. Let k be a number field, A/k an abelian variety with $A_{\bar{k}}$ simple, $\Sigma_A = \{ \text{primes of good reduction for } A \}.$ For $\mathfrak{p} \in \Sigma_A$, let $A_{\mathfrak{p}} := A \mod \mathfrak{p}$. - We say $A_{\mathfrak{p}}$ **splits** if $A_{\mathfrak{p}} \sim A_1 \times A_2$. - We say A_p is **simple** otherwise. Let k be a number field, A/k an abelian variety with $A_{\bar{k}}$ simple, $\Sigma_A = \{ \text{primes of good reduction for } A \}.$ For $\mathfrak{p} \in \Sigma_A$, let $A_{\mathfrak{p}} := A \mod \mathfrak{p}$. - We say $A_{\mathfrak{p}}$ **splits** if $A_{\mathfrak{p}} \sim A_1 \times A_2$. - We say $A_{\mathfrak{p}}$ is **simple** otherwise. #### **Problem** Describe the set $S = \{ \mathfrak{p} \in \Sigma_{\mathcal{A}} \mid \mathcal{A}_{\mathfrak{p}} \text{ is simple} \}.$ Let k be a number field, A/k an abelian variety with $A_{\bar{k}}$ simple, $\Sigma_A = \{ \text{primes of good reduction for } A \}$. For $\mathfrak{p} \in \Sigma_A$, let $A_{\mathfrak{p}} := A \mod \mathfrak{p}$. - We say $A_{\mathfrak{p}}$ splits if $A_{\mathfrak{p}} \sim A_1 \times A_2$. - We say $A_{\mathfrak{p}}$ is **simple** otherwise. #### **Problem** Describe the set $S = \{ \mathfrak{p} \in \Sigma_{\mathcal{A}} \mid \mathcal{A}_{\mathfrak{p}} \text{ is simple} \}.$ • This problem was first studied by V. K. Murty and V. M. Patankar. Let k be a number field, A/k an abelian variety with $A_{\bar{k}}$ simple, $\Sigma_A = \{ \text{primes of good reduction for } A \}.$ For $\mathfrak{p} \in \Sigma_A$, let $A_{\mathfrak{p}} := A \mod \mathfrak{p}$. - We say $A_{\mathfrak{p}}$ splits if $A_{\mathfrak{p}} \sim A_1 \times A_2$. - We say $A_{\mathfrak{p}}$ is **simple** otherwise. #### **Problem** Describe the set $S = \{ \mathfrak{p} \in \Sigma_A \mid A_{\mathfrak{p}} \text{ is simple} \}.$ - This problem was first studied by V. K. Murty and V. M. Patankar. - Alternatively: to what extent does A "look like" a product $A_1 \times A_2$? # Theorem (Achter, Zywina) Assume the Mumford-Tate conjecture for A. Suppose $\operatorname{End}(A_{\overline{k}})$ is **commutative**. There exists a finite extension k'/k such that, for a density one set of primes $\mathfrak{p} \in \Sigma_{A_{k'}}$, $A_{k',\mathfrak{p}}$ is simple. # Theorem (Achter, Zywina) Assume the Mumford-Tate conjecture for A. Suppose $\operatorname{End}(A_{\overline{k}})$ is **commutative**. There exists a finite extension k'/k such that, for a density one set of primes $\mathfrak{p} \in \Sigma_{A_{k'}}$, $A_{k',\mathfrak{p}}$ is simple. $\leadsto S$ has positive density. # Theorem (Achter, Zywina) Assume the Mumford-Tate conjecture for A. Suppose $\operatorname{End}(A_{\overline{k}})$ is **commutative**. There exists a finite extension k'/k such that, for a density one set of primes $\mathfrak{p} \in \Sigma_{A_{k'}}$, $A_{k',\mathfrak{p}}$ is simple. $\leadsto S$ has positive density. # Theorem (Waterhouse; Achter, Zywina) Suppose End(A) is **noncommutative**. Then, for a density one set of primes $\mathfrak{p} \in \Sigma_A$, $A_{\mathfrak{p}}$ splits. # Theorem (Achter, Zywina) Assume the Mumford-Tate conjecture for A. Suppose $\operatorname{End}(A_{\overline{k}})$ is **commutative**. There exists a finite extension k'/k such that, for a density one set of primes $\mathfrak{p} \in \Sigma_{A_{k'}}$, $A_{k',\mathfrak{p}}$ is simple. $\leadsto S$ has positive density. # Theorem (Waterhouse; Achter, Zywina) Suppose $\operatorname{End}(A)$ is **noncommutative**. Then, for a density one set of primes $\mathfrak{p} \in \Sigma_A$, $A_{\mathfrak{p}}$ splits. $\leadsto S$ has density zero. # Theorem (Achter, Zywina) Assume the Mumford-Tate conjecture for A. Suppose $\operatorname{End}(A_{\overline{k}})$ is **commutative**. There exists a finite extension k'/k such that, for a density one set of primes $\mathfrak{p} \in \Sigma_{A_{k'}}$, $A_{k',\mathfrak{p}}$ is simple. $\leadsto S$ has positive density. # Theorem (Waterhouse; Achter, Zywina) Suppose $\operatorname{End}(A)$ is **noncommutative**. Then, for a density one set of primes $\mathfrak{p} \in \Sigma_A$, $A_{\mathfrak{p}}$ splits. $\leadsto S$ has density zero. # Theorem (Morita, Yoshida) # Theorem (Achter, Zywina) Assume the Mumford-Tate conjecture for A. Suppose $\operatorname{End}(A_{\overline{k}})$ is **commutative**. There exists a finite extension k'/k such that, for a density one set of primes $\mathfrak{p} \in \Sigma_{A_{k'}}$, $A_{k',\mathfrak{p}}$ is simple. $\leadsto S$ has positive density. # Theorem (Waterhouse; Achter, Zywina) Suppose $\operatorname{End}(A)$ is **noncommutative**. Then, for a density one set of primes $\mathfrak{p} \in \Sigma_A$, $A_{\mathfrak{p}}$ splits. $\leadsto S$ has density zero. # Theorem (Morita, Yoshida) Let A/k be an abelian surface with quaternionic multiplication by D. If D splits at p and $\mathfrak{p} \mid p$, then $A_{\mathfrak{p}}$ splits. $\leadsto S$ is **finite**. #### The main result # Theorem (F.) Suppose $\operatorname{End}(A)$ is noncommutative. Then, for every prime $\mathfrak p$ of k of good reduction for A coprime to all primes of ramification of $\operatorname{End}(A)\otimes \mathbb Q$, the reduction $A_{\mathfrak p}$ splits. In particular, $S = \{ \mathfrak{p} \in \Sigma_A \mid A_{\mathfrak{p}} \text{ is simple} \}$ is finite. #### The main result # Theorem (F.) Suppose $\operatorname{End}(A)$ is noncommutative. Then, for every prime $\mathfrak p$ of k of good reduction for A coprime to all primes of ramification of $\operatorname{End}(A)\otimes \mathbb Q$, the reduction $A_{\mathfrak p}$ splits. In particular, $S = \{ \mathfrak{p} \in \Sigma_A \mid A_{\mathfrak{p}} \text{ is simple} \}$ is finite. - Proof is guided by case of dim 2. - Theorem applies to the following types in Albert classification: - Type II: indefinite quaternion algebra over totally real field. - Type III: definite quaternion algebra over totally real field. - Type IV: central division algebra over CM field. Let $q = p^r$. Consider a simple abelian variety X/\mathbb{F}_q of dimension $g \geq 2$. Let $\operatorname{End}^0(X) = \operatorname{End}(X) \otimes \mathbb{Q}$. • The Frobenius π acts on X, and $Z(\operatorname{End}^0(X)) = \mathbb{Q}(\pi)$. - The Frobenius π acts on X, and $Z(\operatorname{End}^0(X)) = \mathbb{Q}(\pi)$. - End⁰(X) is a division algebra of Schur index $\frac{2g}{[\mathbb{Q}(\pi):\mathbb{Q}]}$. - The Frobenius π acts on X, and $Z(\operatorname{End}^0(X)) = \mathbb{Q}(\pi)$. - $\operatorname{End}^0(X)$ is a division algebra of Schur index $\frac{2g}{[\mathbb{Q}(\pi):\mathbb{Q}]}$. - $\operatorname{ord}_{\operatorname{Br}(\mathbb{Q}(\pi))}[\operatorname{End}^0(X)] = \frac{2g}{[\mathbb{Q}(\pi):\mathbb{Q}]}$. - The Frobenius π acts on X, and $Z(\operatorname{End}^0(X)) = \mathbb{Q}(\pi)$. - $\operatorname{End}^0(X)$ is a division algebra of Schur index $\frac{2g}{[\mathbb{Q}(\pi):\mathbb{Q}]}$. - $\operatorname{ord}_{\operatorname{Br}(\mathbb{Q}(\pi))}[\operatorname{End}^0(X)] = \frac{2g}{[\mathbb{Q}(\pi):\mathbb{Q}]}$. - $\mathbb{Q}(\pi)$ is either $\mathbb{Q}(\sqrt{p})$, or a CM field of degree |2g|. - The Frobenius π acts on X, and $Z(\operatorname{End}^0(X)) = \mathbb{Q}(\pi)$. - $\operatorname{End}^0(X)$ is a division algebra of Schur index $\frac{2g}{[\mathbb{Q}(\pi):\mathbb{Q}]}$. - $\operatorname{ord}_{\operatorname{Br}(\mathbb{Q}(\pi))}[\operatorname{End}^0(X)] = \frac{2g}{[\mathbb{Q}(\pi):\mathbb{Q}]}$. - $\mathbb{Q}(\pi)$ is either $\mathbb{Q}(\sqrt{p})$, or a CM field of degree |2g|. - $\mathbb{Q}(\pi)$ is always a CM field when g > 2. - The Frobenius π acts on X, and $Z(\operatorname{End}^0(X)) = \mathbb{Q}(\pi)$. - \bullet $\operatorname{End}^0(X)$ is a division algebra of Schur index $\frac{2g}{[\mathbb{Q}(\pi):\mathbb{Q}]}.$ - $\operatorname{ord}_{\operatorname{Br}(\mathbb{Q}(\pi))}[\operatorname{End}^0(X)] = \frac{2g}{[\mathbb{Q}(\pi):\mathbb{Q}]}$. - $\mathbb{Q}(\pi)$ is either $\mathbb{Q}(\sqrt{p})$, or a CM field of degree $\mid 2g$. - $\mathbb{Q}(\pi)$ is always a CM field when g > 2. - End⁰(X) ramifies at all real places, and possibly at primes over p. - The Frobenius π acts on X, and $Z(\operatorname{End}^0(X)) = \mathbb{Q}(\pi)$. - $\operatorname{End}^0(X)$ is a division algebra of Schur index $\frac{2g}{[\mathbb{Q}(\pi):\mathbb{Q}]}$. - $\operatorname{ord}_{\operatorname{Br}(\mathbb{Q}(\pi))}[\operatorname{End}^0(X)] = \frac{2g}{[\mathbb{Q}(\pi):\mathbb{Q}]}$. - $\mathbb{Q}(\pi)$ is either $\mathbb{Q}(\sqrt{p})$, or a CM field of degree |2g|. - $\mathbb{Q}(\pi)$ is always a CM field when g > 2. - End⁰(X) ramifies at all real places, and possibly at primes over p. - For all $\mathfrak{q} \nmid p$, $\operatorname{inv}_{\mathfrak{q}}[\operatorname{End}^0(X)] = 0$. - The Frobenius π acts on X, and $Z(\operatorname{End}^0(X)) = \mathbb{Q}(\pi)$. - $\operatorname{End}^0(X)$ is a division algebra of Schur index $\frac{2g}{[\mathbb{Q}(\pi):\mathbb{Q}]}$. - $\operatorname{ord}_{\operatorname{Br}(\mathbb{Q}(\pi))}[\operatorname{End}^0(X)] = \frac{2g}{[\mathbb{Q}(\pi):\mathbb{Q}]}$. - $\mathbb{Q}(\pi)$ is either $\mathbb{Q}(\sqrt{p})$, or a CM field of degree |2g|. - $\mathbb{Q}(\pi)$ is always a CM field when g > 2. - End $^0(X)$ ramifies at all real places, and possibly at primes over p. - For all $\mathfrak{q} \nmid p$, $\operatorname{inv}_{\mathfrak{q}}[\operatorname{End}^{0}(X)] = 0$. - If $\mathbb{Q}(\pi)$ is CM, then for some $\mathfrak{p} \mid p$, $\mathsf{inv}_{\mathfrak{p}}[\mathsf{End}^0(X)] \neq 0$. ## Theorem (Morita, Yoshida) # Theorem (Morita, Yoshida) Let A/k be an abelian surface with quaternionic multiplication by $D_{/\mathbb{Q}}$. If D splits at p and $\mathfrak{p} \mid p$, then $A_{\mathfrak{p}}$ splits. • Let $\mathfrak{p} \mid p$, suppose $A_{\mathfrak{p}}$ is simple. ## Theorem (Morita, Yoshida) - Let $\mathfrak{p} \mid p$, suppose $A_{\mathfrak{p}}$ is simple. - Want: D ramifies at p. # Theorem (Morita, Yoshida) - Let $\mathfrak{p} \mid p$, suppose $A_{\mathfrak{p}}$ is simple. - Want: D ramifies at p. - A simple with QM, $g=2 \stackrel{\mathsf{Shimura}}{\Longrightarrow} D$ is indefinite $(D \otimes \mathbb{R} \simeq M_2(\mathbb{R}))$. # Theorem (Morita, Yoshida) - Let $\mathfrak{p} \mid p$, suppose $A_{\mathfrak{p}}$ is simple. - Want: D ramifies at p. - A simple with QM, $g=2 \stackrel{\mathsf{Shimura}}{\Longrightarrow} D$ is indefinite $(D \otimes \mathbb{R} \simeq M_2(\mathbb{R}))$. - Reduction map gives an injection $D = \operatorname{End}^0(A) \hookrightarrow \operatorname{End}^0(A_{\mathfrak{p}})$. # Theorem (Morita, Yoshida) - Let $\mathfrak{p} \mid p$, suppose $A_{\mathfrak{p}}$ is simple. - Want: D ramifies at p. - A simple with QM, $g=2 \stackrel{\mathsf{Shimura}}{\Longrightarrow} D$ is indefinite $(D \otimes \mathbb{R} \simeq M_2(\mathbb{R}))$. - Reduction map gives an injection $D = \operatorname{End}^0(A) \hookrightarrow \operatorname{End}^0(A_{\mathfrak{p}})$. - Can extend the injection to $D \otimes_{\mathbb{Q}} \mathbb{Q}(\pi) \hookrightarrow \operatorname{End}^0(A_{\mathfrak{p}})$. # Theorem (Morita, Yoshida) - Let $\mathfrak{p} \mid p$, suppose $A_{\mathfrak{p}}$ is simple. - Want: D ramifies at p. - A simple with QM, $g=2 \stackrel{\mathsf{Shimura}}{\Longrightarrow} D$ is indefinite $(D \otimes \mathbb{R} \simeq M_2(\mathbb{R}))$. - Reduction map gives an injection $D = \operatorname{End}^0(A) \hookrightarrow \operatorname{End}^0(A_{\mathfrak{p}})$. - Can extend the injection to $D \otimes_{\mathbb{Q}} \mathbb{Q}(\pi) \simeq \operatorname{End}^0(A_{\mathfrak{p}})$. # Theorem (Morita, Yoshida) - Let $\mathfrak{p} \mid p$, suppose $A_{\mathfrak{p}}$ is simple. - Want: D ramifies at p. - A simple with QM, $g=2 \stackrel{\mathsf{Shimura}}{\Longrightarrow} D$ is indefinite $(D \otimes \mathbb{R} \simeq M_2(\mathbb{R}))$. - Reduction map gives an injection $D = \operatorname{End}^0(A) \hookrightarrow \operatorname{End}^0(A_{\mathfrak{p}})$. - Can extend the injection to $D \otimes_{\mathbb{Q}} \mathbb{Q}(\pi) \simeq \operatorname{End}^0(A_{\mathfrak{p}})$. - If $\mathbb{Q}(\pi) = \mathbb{Q}(\sqrt{p})$ then D would be definite (!). # Theorem (Morita, Yoshida) - Let $\mathfrak{p} \mid p$, suppose $A_{\mathfrak{p}}$ is simple. - Want: D ramifies at p. - A simple with QM, $g=2 \stackrel{\mathsf{Shimura}}{\Longrightarrow} D$ is indefinite $(D \otimes \mathbb{R} \simeq M_2(\mathbb{R}))$. - Reduction map gives an injection $D = \operatorname{End}^0(A) \hookrightarrow \operatorname{End}^0(A_{\mathfrak{p}})$. - Can extend the injection to $D \otimes_{\mathbb{Q}} \mathbb{Q}(\pi) \simeq \operatorname{End}^0(A_{\mathfrak{p}})$. - If $\mathbb{Q}(\pi) = \mathbb{Q}(\sqrt{p})$ then D would be definite (!). - Hence $\mathbb{Q}(\pi) = \text{imaginary quadratic, and } \operatorname{End}^0(A_{\mathfrak{p}})$ ramifies at some prime over p. # Theorem (Morita, Yoshida) - Let $\mathfrak{p} \mid p$, suppose $A_{\mathfrak{p}}$ is simple. - Want: D ramifies at p. - A simple with QM, $g=2 \stackrel{\mathsf{Shimura}}{\Longrightarrow} D$ is indefinite $(D \otimes \mathbb{R} \simeq M_2(\mathbb{R}))$. - Reduction map gives an injection $D = \operatorname{End}^0(A) \hookrightarrow \operatorname{End}^0(A_{\mathfrak{p}})$. - Can extend the injection to $D \otimes_{\mathbb{Q}} \mathbb{Q}(\pi) \simeq \operatorname{End}^0(A_{\mathfrak{p}})$. - If $\mathbb{Q}(\pi) = \mathbb{Q}(\sqrt{p})$ then D would be definite (!). - Hence $\mathbb{Q}(\pi) = \text{imaginary quadratic, and } \operatorname{End}^0(A_{\mathfrak{p}})$ ramifies at some prime over p. - \implies D ramifies at p. • Need replacement for injection $\operatorname{End}^0(A) \otimes_{\mathbb Q} \mathbb Q(\pi) \hookrightarrow \operatorname{End}^0(A_{\mathfrak p})$. In general, we don't have $Z(\operatorname{End}^0(A)) \subseteq Z(\operatorname{End}^0(A_{\mathfrak p}))$. - Need replacement for injection $\operatorname{End}^0(A) \otimes_{\mathbb{Q}} \mathbb{Q}(\pi) \hookrightarrow \operatorname{End}^0(A_{\mathfrak{p}})$. In general, we don't have $Z(\operatorname{End}^0(A)) \subseteq Z(\operatorname{End}^0(A_{\mathfrak{p}}))$. - In dim > 2, $D \otimes_{\mathbb{Q}} \mathbb{Q}(\pi)$ can be much smaller than $\operatorname{End}^0(A_{\mathfrak{p}})$ (no isomorphism in general). - Need replacement for injection $\operatorname{End}^0(A) \otimes_{\mathbb{Q}} \mathbb{Q}(\pi) \hookrightarrow \operatorname{End}^0(A_{\mathfrak{p}})$. In general, we don't have $Z(\operatorname{End}^0(A)) \subseteq Z(\operatorname{End}^0(A_{\mathfrak{p}}))$. - In dim > 2, $D \otimes_{\mathbb{Q}} \mathbb{Q}(\pi)$ can be much smaller than $\operatorname{End}^0(A_{\mathfrak{p}})$ (no isomorphism in general). - Still need to compare $\operatorname{End}^0(A)$ and $\operatorname{End}^0(A_{\mathfrak{p}})$. - Need replacement for injection $\operatorname{End}^0(A) \otimes_{\mathbb{Q}} \mathbb{Q}(\pi) \hookrightarrow \operatorname{End}^0(A_{\mathfrak{p}})$. In general, we don't have $Z(\operatorname{End}^0(A)) \subseteq Z(\operatorname{End}^0(A_{\mathfrak{p}}))$. - In dim > 2, $D \otimes_{\mathbb{Q}} \mathbb{Q}(\pi)$ can be much smaller than $\operatorname{End}^0(A_{\mathfrak{p}})$ (no isomorphism in general). - Still need to compare $\operatorname{End}^0(A)$ and $\operatorname{End}^0(A_{\mathfrak{p}})$. - If $Z = Z(\text{End}^0(A))$ is CM field, then $\text{ord}_{\text{Br}(Z)}[\text{End}^0(A)]$ can be arbitrarily large. #### Reduction to prime subalgebras #### Lemma Let E be a division algebra with center Z and $\operatorname{ord}_{\operatorname{Br}(Z)}[E] = m$. Let $\ell \mid m$. Then, there exist - a field F with $Z \subseteq F \subseteq E$, and - ullet a central division F-algebra $D\subset E$ and $\operatorname{ord}_{\operatorname{Br}(F)}[D]=\ell$, such that $[E \otimes_Z F] = [D]$ in Br(F). ### Reduction to prime subalgebras #### Lemma Let E be a division algebra with center Z and $\operatorname{ord}_{\operatorname{Br}(Z)}[E] = m$. Let $\ell \mid m$. Then, there exist - a field F with $Z \subseteq F \subset E$, and - ullet a central division F-algebra $D\subset E$ and $\operatorname{ord}_{\operatorname{Br}(F)}[D]=\ell$, such that $[E \otimes_Z F] = [D]$ in Br(F). $$D o \mathsf{End}^0(A) o \mathsf{End}^0(A_{\mathfrak{p}})$$ ## Reduction to prime subalgebras #### Lemma Let E be a division algebra with center Z and $\operatorname{ord}_{\operatorname{Br}(Z)}[E] = m$. Let $\ell \mid m$. Then, there exist - a field F with $Z \subseteq F \subset E$, and - ullet a central division F-algebra $D\subset E$ and $\operatorname{ord}_{\operatorname{Br}(F)}[D]=\ell$, such that $[E \otimes_Z F] = [D]$ in Br(F). $$D o \mathsf{End}^0(A) o \mathsf{End}^0(A_{\mathfrak{p}})$$ #### Remark If $\operatorname{End}^0(A)$ is a quaternion algebra, then $D=\operatorname{End}^0(A)$. #### Theorem (F.) Let - $B_{/K}$ a division algebra, $F \subset B$ a field. - $D_{/F}$ a division algebra with $\operatorname{ord}_{\operatorname{Br}(F)}[D] = \ell$ prime. #### Theorem (F.) Let - $B_{/K}$ a division algebra, $F \subset B$ a field. - $D_{/F}$ a division algebra with $\operatorname{ord}_{\operatorname{Br}(F)}[D] = \ell$ prime. Then $\tilde{F} = FK \subset B$ is a field, and there exists $\iota : D \hookrightarrow B$ if and only if: #### Theorem (F.) Let - $B_{/K}$ a division algebra, $F \subset B$ a field. - $D_{/F}$ a division algebra with $\operatorname{ord}_{\operatorname{Br}(F)}[D] = \ell$ prime. Then $\tilde{F} = FK \subset B$ is a field, and there exists $\iota : D \hookrightarrow B$ if and only if: $lackbox{0} \ d := \operatorname{ord}_{\operatorname{Br}(\tilde{F})}[B \otimes_K \tilde{F}]$ is divisible by ℓ exactly once, and #### Theorem (F.) Let - $B_{/K}$ a division algebra, $F \subset B$ a field. - $D_{/F}$ a division algebra with $\operatorname{ord}_{\operatorname{Br}(F)}[D] = \ell$ prime. Then $\tilde{F} = FK \subset B$ is a field, and there exists $\iota : D \hookrightarrow B$ if and only if: - $lackbox{0}\ d:=\operatorname{ord}_{\operatorname{Br}(\tilde{F})}[B\otimes_K \tilde{F}]$ is divisible by ℓ exactly once, and #### Theorem (F.) Let - $B_{/K}$ a division algebra, $F \subset B$ a field. - $D_{/F}$ a division algebra with $\operatorname{ord}_{\operatorname{Br}(F)}[D] = \ell$ prime. Then $\tilde{F} = FK \subset B$ is a field, and there exists $\iota : D \hookrightarrow B$ if and only if: - $lack d := \operatorname{ord}_{\operatorname{Br}(\tilde{F})}[B \otimes_K \tilde{F}]$ is divisible by ℓ exactly once, and In that case, \tilde{F} splits neither D nor B. #### Theorem (F.) Let - $B_{/K}$ a division algebra, $F \subset B$ a field. - $D_{/F}$ a division algebra with $\operatorname{ord}_{\operatorname{Br}(F)}[D] = \ell$ prime. Then $\tilde{F} = FK \subset B$ is a field, and there exists $\iota : D \hookrightarrow B$ if and only if: - $lackbox{0}\ d:=\operatorname{ord}_{\operatorname{Br}(\tilde{F})}[B\otimes_K \tilde{F}]$ is divisible by ℓ exactly once, and In that case, \tilde{F} splits neither D nor B. The proof uses a characterization of Chia-Fu Yu of embeddings $D \hookrightarrow B$. #### Theorem (F.) Suppose $\operatorname{End}(A)$ is noncommutative. Then, for every prime $\mathfrak p$ of k of good reduction for A coprime to all primes of ramification of $\operatorname{End}(A) \otimes \mathbb Q$, the reduction $A_{\mathfrak p}$ splits. #### Theorem (F.) Suppose $\operatorname{End}(A)$ is noncommutative. Then, for every prime $\mathfrak p$ of k of good reduction for A coprime to all primes of ramification of $\operatorname{End}(A) \otimes \mathbb Q$, the reduction $A_{\mathfrak p}$ splits. • Let $A_{/k}$ with noncommutative End⁰(A), with center Z. #### Theorem (F.) Suppose $\operatorname{End}(A)$ is noncommutative. Then, for every prime $\mathfrak p$ of k of good reduction for A coprime to all primes of ramification of $\operatorname{End}(A) \otimes \mathbb Q$, the reduction $A_{\mathfrak p}$ splits. - Let $A_{/k}$ with noncommutative End⁰(A), with center Z. - Let $\mathfrak{p} \in \Sigma_A$ over p, suppose $A_{\mathfrak{p}}$ simple. #### Theorem (F.) Suppose $\operatorname{End}(A)$ is noncommutative. Then, for every prime $\mathfrak p$ of k of good reduction for A coprime to all primes of ramification of $\operatorname{End}(A)\otimes \mathbb Q$, the reduction $A_{\mathfrak p}$ splits. - Let $A_{/k}$ with noncommutative End⁰(A), with center Z. - Let $\mathfrak{p} \in \Sigma_{\mathcal{A}}$ over p, suppose $A_{\mathfrak{p}}$ simple. - Want: $End^0(A)$ ramifies at some prime over p. #### Theorem (F.) Suppose $\operatorname{End}(A)$ is noncommutative. Then, for every prime $\mathfrak p$ of k of good reduction for A coprime to all primes of ramification of $\operatorname{End}(A)\otimes \mathbb Q$, the reduction $A_{\mathfrak p}$ splits. - Let $A_{/k}$ with noncommutative End⁰(A), with center Z. - Let $\mathfrak{p} \in \Sigma_{\mathcal{A}}$ over p, suppose $A_{\mathfrak{p}}$ simple. - Want: $End^0(A)$ ramifies at some prime over p. - Choose algebra $D_{/F} \subset \operatorname{End}^0(A)$ with prime index ℓ and $$[\operatorname{End}^0(A)\otimes_Z F]=[D]$$ in $\operatorname{Br}(F)$. #### Theorem (F.) Suppose $\operatorname{End}(A)$ is noncommutative. Then, for every prime $\mathfrak p$ of k of good reduction for A coprime to all primes of ramification of $\operatorname{End}(A) \otimes \mathbb Q$, the reduction $A_{\mathfrak p}$ splits. - Let $A_{/k}$ with noncommutative End⁰(A), with center Z. - Let $\mathfrak{p} \in \Sigma_{\mathcal{A}}$ over p, suppose $A_{\mathfrak{p}}$ simple. - Want: $End^0(A)$ ramifies at some prime over p. - Choose algebra $D_{/F} \subset \operatorname{End}^0(A)$ with prime index ℓ and $$[\operatorname{End}^0(A)\otimes_Z F]=[D]$$ in $\operatorname{Br}(F)$. • We have an embedding of division algebras $$D o \operatorname{End}^0(A) o \operatorname{End}^0(A_{\mathfrak p}).$$ • By previous result, letting $d = \operatorname{ord}_{\mathsf{Br}(F(\pi))}[\mathsf{End}^0(A_\mathfrak{p}) \otimes_{\mathbb{Q}(\pi)} F(\pi)], \ \ell \| d$, $$\frac{d}{\ell}[D\otimes_F F(\pi)] = \frac{d}{\ell}[\operatorname{End}^0(A_{\mathfrak{p}})\otimes_{\mathbb{Q}(\pi)} F(\pi)] \text{ in } \operatorname{Br}(F(\pi)).$$ ullet By previous result, letting $d=\operatorname{ord}_{\operatorname{Br}(F(\pi))}[\operatorname{End}^0(A_{\mathfrak{p}})\otimes_{\mathbb{Q}(\pi)}F(\pi)]$, $\ell\|d$, $$\frac{d}{\ell}[D\otimes_F F(\pi)] = \frac{d}{\ell}[\operatorname{End}^0(A_{\mathfrak{p}})\otimes_{\mathbb{Q}(\pi)} F(\pi)] \text{ in } \operatorname{Br}(F(\pi)).$$ • Combining with $[\operatorname{End}^0(A) \otimes_{\mathbb{Z}} F] = [D]$ gives $$\frac{d}{\ell}[\mathsf{End}^0(A)\otimes_{\mathcal{Z}}F(\pi)]=\frac{d}{\ell}[\mathsf{End}^0(A_{\mathfrak{p}})\otimes_{\mathbb{Q}(\pi)}F(\pi)].$$ ullet By previous result, letting $d=\operatorname{ord}_{\operatorname{Br}(F(\pi))}[\operatorname{End}^0(A_{\mathfrak{p}})\otimes_{\mathbb{Q}(\pi)}F(\pi)],\ \ell\|d\|$ $$\frac{d}{\ell}[D\otimes_F F(\pi)] = \frac{d}{\ell}[\operatorname{End}^0(A_{\mathfrak{p}})\otimes_{\mathbb{Q}(\pi)} F(\pi)] \text{ in } \operatorname{Br}(F(\pi)).$$ • Combining with $[\operatorname{End}^0(A) \otimes_{\mathbb{Z}} F] = [D]$ gives $$\frac{d}{\ell}[\mathsf{End}^0(A)\otimes_{\mathcal{Z}}F(\pi)] = \frac{d}{\ell}[\mathsf{End}^0(A_\mathfrak{p})\otimes_{\mathbb{Q}(\pi)}F(\pi)].$$ • By Honda-Tate theory, $\operatorname{End}^0(A_{\mathfrak{p}})$ ramifies at places over p. • By previous result, letting $d = \operatorname{ord}_{\mathsf{Br}(F(\pi))}[\mathsf{End}^0(A_\mathfrak{p}) \otimes_{\mathbb{Q}(\pi)} F(\pi)], \ \ell \| d$, $$\frac{d}{\ell}[D\otimes_F F(\pi)] = \frac{d}{\ell}[\operatorname{End}^0(A_{\mathfrak{p}})\otimes_{\mathbb{Q}(\pi)} F(\pi)] \text{ in } \operatorname{Br}(F(\pi)).$$ • Combining with $[\operatorname{End}^0(A) \otimes_{\mathbb{Z}} F] = [D]$ gives $$\frac{d}{\ell}[\mathsf{End}^0(A)\otimes_Z F(\pi)] = \frac{d}{\ell}[\mathsf{End}^0(A_\mathfrak{p})\otimes_{\mathbb{Q}(\pi)} F(\pi)].$$ - By Honda-Tate theory, $\operatorname{End}^0(A_{\mathfrak{p}})$ ramifies at places over p. - \implies End⁰(A) ramifies at a place over p. # Abelian varieties with noncommutative endomorphism ring split modulo all but finitely many primes Enric Florit Universitat de Barcelona Décimas Jornadas de Teoría de Números 10 de julio de 2024