Abelian varieties that split modulo all but finitely many primes

Enric Florit

Universitat de Barcelona

Décimas Jornadas de Teoría de Números 10 de julio de 2024

Let k be a number field, A/k an abelian variety with $A_{\bar k}$ simple, $\Sigma_A = \{ \text{primes of good reduction for } A \}$. For $\mathfrak{p} \in \Sigma_A$, let $A_{\mathfrak{p}} := A \mod \mathfrak{p}$.

Let k be a number field, A/k an abelian variety with $A_{\bar{k}}$ simple, $\Sigma_A = \{ \text{primes of good reduction for } A \}.$ For $\mathfrak{p} \in \Sigma_A$, let $A_{\mathfrak{p}} := A \mod \mathfrak{p}$.

- We say $A_{\mathfrak{p}}$ **splits** if $A_{\mathfrak{p}} \sim A_1 \times A_2$.
- We say A_p is **simple** otherwise.

Let k be a number field, A/k an abelian variety with $A_{\bar{k}}$ simple, $\Sigma_A = \{ \text{primes of good reduction for } A \}.$ For $\mathfrak{p} \in \Sigma_A$, let $A_{\mathfrak{p}} := A \mod \mathfrak{p}$.

- We say $A_{\mathfrak{p}}$ **splits** if $A_{\mathfrak{p}} \sim A_1 \times A_2$.
- We say $A_{\mathfrak{p}}$ is **simple** otherwise.

Problem

Describe the set $S = \{ \mathfrak{p} \in \Sigma_{\mathcal{A}} \mid \mathcal{A}_{\mathfrak{p}} \text{ is simple} \}.$

Let k be a number field, A/k an abelian variety with $A_{\bar{k}}$ simple, $\Sigma_A = \{ \text{primes of good reduction for } A \}$. For $\mathfrak{p} \in \Sigma_A$, let $A_{\mathfrak{p}} := A \mod \mathfrak{p}$.

- We say $A_{\mathfrak{p}}$ splits if $A_{\mathfrak{p}} \sim A_1 \times A_2$.
- We say $A_{\mathfrak{p}}$ is **simple** otherwise.

Problem

Describe the set $S = \{ \mathfrak{p} \in \Sigma_{\mathcal{A}} \mid \mathcal{A}_{\mathfrak{p}} \text{ is simple} \}.$

• This problem was first studied by V. K. Murty and V. M. Patankar.

Let k be a number field, A/k an abelian variety with $A_{\bar{k}}$ simple, $\Sigma_A = \{ \text{primes of good reduction for } A \}.$ For $\mathfrak{p} \in \Sigma_A$, let $A_{\mathfrak{p}} := A \mod \mathfrak{p}$.

- We say $A_{\mathfrak{p}}$ splits if $A_{\mathfrak{p}} \sim A_1 \times A_2$.
- We say $A_{\mathfrak{p}}$ is **simple** otherwise.

Problem

Describe the set $S = \{ \mathfrak{p} \in \Sigma_A \mid A_{\mathfrak{p}} \text{ is simple} \}.$

- This problem was first studied by V. K. Murty and V. M. Patankar.
- Alternatively: to what extent does A "look like" a product $A_1 \times A_2$?

Theorem (Achter, Zywina)

Assume the Mumford-Tate conjecture for A. Suppose $\operatorname{End}(A_{\overline{k}})$ is **commutative**. There exists a finite extension k'/k such that, for a density one set of primes $\mathfrak{p} \in \Sigma_{A_{k'}}$, $A_{k',\mathfrak{p}}$ is simple.

Theorem (Achter, Zywina)

Assume the Mumford-Tate conjecture for A. Suppose $\operatorname{End}(A_{\overline{k}})$ is **commutative**. There exists a finite extension k'/k such that, for a density one set of primes $\mathfrak{p} \in \Sigma_{A_{k'}}$, $A_{k',\mathfrak{p}}$ is simple. $\leadsto S$ has positive density.

Theorem (Achter, Zywina)

Assume the Mumford-Tate conjecture for A. Suppose $\operatorname{End}(A_{\overline{k}})$ is **commutative**. There exists a finite extension k'/k such that, for a density one set of primes $\mathfrak{p} \in \Sigma_{A_{k'}}$, $A_{k',\mathfrak{p}}$ is simple. $\leadsto S$ has positive density.

Theorem (Waterhouse; Achter, Zywina)

Suppose End(A) is **noncommutative**. Then, for a density one set of primes $\mathfrak{p} \in \Sigma_A$, $A_{\mathfrak{p}}$ splits.

Theorem (Achter, Zywina)

Assume the Mumford-Tate conjecture for A. Suppose $\operatorname{End}(A_{\overline{k}})$ is **commutative**. There exists a finite extension k'/k such that, for a density one set of primes $\mathfrak{p} \in \Sigma_{A_{k'}}$, $A_{k',\mathfrak{p}}$ is simple. $\leadsto S$ has positive density.

Theorem (Waterhouse; Achter, Zywina)

Suppose $\operatorname{End}(A)$ is **noncommutative**. Then, for a density one set of primes $\mathfrak{p} \in \Sigma_A$, $A_{\mathfrak{p}}$ splits. $\leadsto S$ has density zero.

Theorem (Achter, Zywina)

Assume the Mumford-Tate conjecture for A. Suppose $\operatorname{End}(A_{\overline{k}})$ is **commutative**. There exists a finite extension k'/k such that, for a density one set of primes $\mathfrak{p} \in \Sigma_{A_{k'}}$, $A_{k',\mathfrak{p}}$ is simple. $\leadsto S$ has positive density.

Theorem (Waterhouse; Achter, Zywina)

Suppose $\operatorname{End}(A)$ is **noncommutative**. Then, for a density one set of primes $\mathfrak{p} \in \Sigma_A$, $A_{\mathfrak{p}}$ splits. $\leadsto S$ has density zero.

Theorem (Morita, Yoshida)

Theorem (Achter, Zywina)

Assume the Mumford-Tate conjecture for A. Suppose $\operatorname{End}(A_{\overline{k}})$ is **commutative**. There exists a finite extension k'/k such that, for a density one set of primes $\mathfrak{p} \in \Sigma_{A_{k'}}$, $A_{k',\mathfrak{p}}$ is simple. $\leadsto S$ has positive density.

Theorem (Waterhouse; Achter, Zywina)

Suppose $\operatorname{End}(A)$ is **noncommutative**. Then, for a density one set of primes $\mathfrak{p} \in \Sigma_A$, $A_{\mathfrak{p}}$ splits. $\leadsto S$ has density zero.

Theorem (Morita, Yoshida)

Let A/k be an abelian surface with quaternionic multiplication by D. If D splits at p and $\mathfrak{p} \mid p$, then $A_{\mathfrak{p}}$ splits. $\leadsto S$ is **finite**.

The main result

Theorem (F.)

Suppose $\operatorname{End}(A)$ is noncommutative. Then, for every prime $\mathfrak p$ of k of good reduction for A coprime to all primes of ramification of $\operatorname{End}(A)\otimes \mathbb Q$, the reduction $A_{\mathfrak p}$ splits.

In particular, $S = \{ \mathfrak{p} \in \Sigma_A \mid A_{\mathfrak{p}} \text{ is simple} \}$ is finite.

The main result

Theorem (F.)

Suppose $\operatorname{End}(A)$ is noncommutative. Then, for every prime $\mathfrak p$ of k of good reduction for A coprime to all primes of ramification of $\operatorname{End}(A)\otimes \mathbb Q$, the reduction $A_{\mathfrak p}$ splits.

In particular, $S = \{ \mathfrak{p} \in \Sigma_A \mid A_{\mathfrak{p}} \text{ is simple} \}$ is finite.

- Proof is guided by case of dim 2.
- Theorem applies to the following types in Albert classification:
 - Type II: indefinite quaternion algebra over totally real field.
 - Type III: definite quaternion algebra over totally real field.
 - Type IV: central division algebra over CM field.

Let $q = p^r$. Consider a simple abelian variety X/\mathbb{F}_q of dimension $g \geq 2$. Let $\operatorname{End}^0(X) = \operatorname{End}(X) \otimes \mathbb{Q}$.

• The Frobenius π acts on X, and $Z(\operatorname{End}^0(X)) = \mathbb{Q}(\pi)$.

- The Frobenius π acts on X, and $Z(\operatorname{End}^0(X)) = \mathbb{Q}(\pi)$.
- End⁰(X) is a division algebra of Schur index $\frac{2g}{[\mathbb{Q}(\pi):\mathbb{Q}]}$.

- The Frobenius π acts on X, and $Z(\operatorname{End}^0(X)) = \mathbb{Q}(\pi)$.
- $\operatorname{End}^0(X)$ is a division algebra of Schur index $\frac{2g}{[\mathbb{Q}(\pi):\mathbb{Q}]}$.
- $\operatorname{ord}_{\operatorname{Br}(\mathbb{Q}(\pi))}[\operatorname{End}^0(X)] = \frac{2g}{[\mathbb{Q}(\pi):\mathbb{Q}]}$.

- The Frobenius π acts on X, and $Z(\operatorname{End}^0(X)) = \mathbb{Q}(\pi)$.
- $\operatorname{End}^0(X)$ is a division algebra of Schur index $\frac{2g}{[\mathbb{Q}(\pi):\mathbb{Q}]}$.
- $\operatorname{ord}_{\operatorname{Br}(\mathbb{Q}(\pi))}[\operatorname{End}^0(X)] = \frac{2g}{[\mathbb{Q}(\pi):\mathbb{Q}]}$.
- $\mathbb{Q}(\pi)$ is either $\mathbb{Q}(\sqrt{p})$, or a CM field of degree |2g|.

- The Frobenius π acts on X, and $Z(\operatorname{End}^0(X)) = \mathbb{Q}(\pi)$.
- $\operatorname{End}^0(X)$ is a division algebra of Schur index $\frac{2g}{[\mathbb{Q}(\pi):\mathbb{Q}]}$.
- $\operatorname{ord}_{\operatorname{Br}(\mathbb{Q}(\pi))}[\operatorname{End}^0(X)] = \frac{2g}{[\mathbb{Q}(\pi):\mathbb{Q}]}$.
- $\mathbb{Q}(\pi)$ is either $\mathbb{Q}(\sqrt{p})$, or a CM field of degree |2g|.
- $\mathbb{Q}(\pi)$ is always a CM field when g > 2.

- The Frobenius π acts on X, and $Z(\operatorname{End}^0(X)) = \mathbb{Q}(\pi)$.
- \bullet $\operatorname{End}^0(X)$ is a division algebra of Schur index $\frac{2g}{[\mathbb{Q}(\pi):\mathbb{Q}]}.$
- $\operatorname{ord}_{\operatorname{Br}(\mathbb{Q}(\pi))}[\operatorname{End}^0(X)] = \frac{2g}{[\mathbb{Q}(\pi):\mathbb{Q}]}$.
- $\mathbb{Q}(\pi)$ is either $\mathbb{Q}(\sqrt{p})$, or a CM field of degree $\mid 2g$.
- $\mathbb{Q}(\pi)$ is always a CM field when g > 2.
- End⁰(X) ramifies at all real places, and possibly at primes over p.

- The Frobenius π acts on X, and $Z(\operatorname{End}^0(X)) = \mathbb{Q}(\pi)$.
- $\operatorname{End}^0(X)$ is a division algebra of Schur index $\frac{2g}{[\mathbb{Q}(\pi):\mathbb{Q}]}$.
- $\operatorname{ord}_{\operatorname{Br}(\mathbb{Q}(\pi))}[\operatorname{End}^0(X)] = \frac{2g}{[\mathbb{Q}(\pi):\mathbb{Q}]}$.
- $\mathbb{Q}(\pi)$ is either $\mathbb{Q}(\sqrt{p})$, or a CM field of degree |2g|.
- $\mathbb{Q}(\pi)$ is always a CM field when g > 2.
- End⁰(X) ramifies at all real places, and possibly at primes over p.
- For all $\mathfrak{q} \nmid p$, $\operatorname{inv}_{\mathfrak{q}}[\operatorname{End}^0(X)] = 0$.

- The Frobenius π acts on X, and $Z(\operatorname{End}^0(X)) = \mathbb{Q}(\pi)$.
- $\operatorname{End}^0(X)$ is a division algebra of Schur index $\frac{2g}{[\mathbb{Q}(\pi):\mathbb{Q}]}$.
- $\operatorname{ord}_{\operatorname{Br}(\mathbb{Q}(\pi))}[\operatorname{End}^0(X)] = \frac{2g}{[\mathbb{Q}(\pi):\mathbb{Q}]}$.
- $\mathbb{Q}(\pi)$ is either $\mathbb{Q}(\sqrt{p})$, or a CM field of degree |2g|.
- $\mathbb{Q}(\pi)$ is always a CM field when g > 2.
- End $^0(X)$ ramifies at all real places, and possibly at primes over p.
- For all $\mathfrak{q} \nmid p$, $\operatorname{inv}_{\mathfrak{q}}[\operatorname{End}^{0}(X)] = 0$.
- If $\mathbb{Q}(\pi)$ is CM, then for some $\mathfrak{p} \mid p$, $\mathsf{inv}_{\mathfrak{p}}[\mathsf{End}^0(X)] \neq 0$.

Theorem (Morita, Yoshida)

Theorem (Morita, Yoshida)

Let A/k be an abelian surface with quaternionic multiplication by $D_{/\mathbb{Q}}$. If D splits at p and $\mathfrak{p} \mid p$, then $A_{\mathfrak{p}}$ splits.

• Let $\mathfrak{p} \mid p$, suppose $A_{\mathfrak{p}}$ is simple.

Theorem (Morita, Yoshida)

- Let $\mathfrak{p} \mid p$, suppose $A_{\mathfrak{p}}$ is simple.
- Want: D ramifies at p.

Theorem (Morita, Yoshida)

- Let $\mathfrak{p} \mid p$, suppose $A_{\mathfrak{p}}$ is simple.
- Want: D ramifies at p.
- A simple with QM, $g=2 \stackrel{\mathsf{Shimura}}{\Longrightarrow} D$ is indefinite $(D \otimes \mathbb{R} \simeq M_2(\mathbb{R}))$.

Theorem (Morita, Yoshida)

- Let $\mathfrak{p} \mid p$, suppose $A_{\mathfrak{p}}$ is simple.
- Want: D ramifies at p.
- A simple with QM, $g=2 \stackrel{\mathsf{Shimura}}{\Longrightarrow} D$ is indefinite $(D \otimes \mathbb{R} \simeq M_2(\mathbb{R}))$.
- Reduction map gives an injection $D = \operatorname{End}^0(A) \hookrightarrow \operatorname{End}^0(A_{\mathfrak{p}})$.

Theorem (Morita, Yoshida)

- Let $\mathfrak{p} \mid p$, suppose $A_{\mathfrak{p}}$ is simple.
- Want: D ramifies at p.
- A simple with QM, $g=2 \stackrel{\mathsf{Shimura}}{\Longrightarrow} D$ is indefinite $(D \otimes \mathbb{R} \simeq M_2(\mathbb{R}))$.
- Reduction map gives an injection $D = \operatorname{End}^0(A) \hookrightarrow \operatorname{End}^0(A_{\mathfrak{p}})$.
- Can extend the injection to $D \otimes_{\mathbb{Q}} \mathbb{Q}(\pi) \hookrightarrow \operatorname{End}^0(A_{\mathfrak{p}})$.

Theorem (Morita, Yoshida)

- Let $\mathfrak{p} \mid p$, suppose $A_{\mathfrak{p}}$ is simple.
- Want: D ramifies at p.
- A simple with QM, $g=2 \stackrel{\mathsf{Shimura}}{\Longrightarrow} D$ is indefinite $(D \otimes \mathbb{R} \simeq M_2(\mathbb{R}))$.
- Reduction map gives an injection $D = \operatorname{End}^0(A) \hookrightarrow \operatorname{End}^0(A_{\mathfrak{p}})$.
- Can extend the injection to $D \otimes_{\mathbb{Q}} \mathbb{Q}(\pi) \simeq \operatorname{End}^0(A_{\mathfrak{p}})$.

Theorem (Morita, Yoshida)

- Let $\mathfrak{p} \mid p$, suppose $A_{\mathfrak{p}}$ is simple.
- Want: D ramifies at p.
- A simple with QM, $g=2 \stackrel{\mathsf{Shimura}}{\Longrightarrow} D$ is indefinite $(D \otimes \mathbb{R} \simeq M_2(\mathbb{R}))$.
- Reduction map gives an injection $D = \operatorname{End}^0(A) \hookrightarrow \operatorname{End}^0(A_{\mathfrak{p}})$.
- Can extend the injection to $D \otimes_{\mathbb{Q}} \mathbb{Q}(\pi) \simeq \operatorname{End}^0(A_{\mathfrak{p}})$.
- If $\mathbb{Q}(\pi) = \mathbb{Q}(\sqrt{p})$ then D would be definite (!).

Theorem (Morita, Yoshida)

- Let $\mathfrak{p} \mid p$, suppose $A_{\mathfrak{p}}$ is simple.
- Want: D ramifies at p.
- A simple with QM, $g=2 \stackrel{\mathsf{Shimura}}{\Longrightarrow} D$ is indefinite $(D \otimes \mathbb{R} \simeq M_2(\mathbb{R}))$.
- Reduction map gives an injection $D = \operatorname{End}^0(A) \hookrightarrow \operatorname{End}^0(A_{\mathfrak{p}})$.
- Can extend the injection to $D \otimes_{\mathbb{Q}} \mathbb{Q}(\pi) \simeq \operatorname{End}^0(A_{\mathfrak{p}})$.
- If $\mathbb{Q}(\pi) = \mathbb{Q}(\sqrt{p})$ then D would be definite (!).
- Hence $\mathbb{Q}(\pi) = \text{imaginary quadratic, and } \operatorname{End}^0(A_{\mathfrak{p}})$ ramifies at some prime over p.

Theorem (Morita, Yoshida)

- Let $\mathfrak{p} \mid p$, suppose $A_{\mathfrak{p}}$ is simple.
- Want: D ramifies at p.
- A simple with QM, $g=2 \stackrel{\mathsf{Shimura}}{\Longrightarrow} D$ is indefinite $(D \otimes \mathbb{R} \simeq M_2(\mathbb{R}))$.
- Reduction map gives an injection $D = \operatorname{End}^0(A) \hookrightarrow \operatorname{End}^0(A_{\mathfrak{p}})$.
- Can extend the injection to $D \otimes_{\mathbb{Q}} \mathbb{Q}(\pi) \simeq \operatorname{End}^0(A_{\mathfrak{p}})$.
- If $\mathbb{Q}(\pi) = \mathbb{Q}(\sqrt{p})$ then D would be definite (!).
- Hence $\mathbb{Q}(\pi) = \text{imaginary quadratic, and } \operatorname{End}^0(A_{\mathfrak{p}})$ ramifies at some prime over p.
- \implies D ramifies at p.

• Need replacement for injection $\operatorname{End}^0(A) \otimes_{\mathbb Q} \mathbb Q(\pi) \hookrightarrow \operatorname{End}^0(A_{\mathfrak p})$. In general, we don't have $Z(\operatorname{End}^0(A)) \subseteq Z(\operatorname{End}^0(A_{\mathfrak p}))$.

- Need replacement for injection $\operatorname{End}^0(A) \otimes_{\mathbb{Q}} \mathbb{Q}(\pi) \hookrightarrow \operatorname{End}^0(A_{\mathfrak{p}})$. In general, we don't have $Z(\operatorname{End}^0(A)) \subseteq Z(\operatorname{End}^0(A_{\mathfrak{p}}))$.
- In dim > 2, $D \otimes_{\mathbb{Q}} \mathbb{Q}(\pi)$ can be much smaller than $\operatorname{End}^0(A_{\mathfrak{p}})$ (no isomorphism in general).

- Need replacement for injection $\operatorname{End}^0(A) \otimes_{\mathbb{Q}} \mathbb{Q}(\pi) \hookrightarrow \operatorname{End}^0(A_{\mathfrak{p}})$. In general, we don't have $Z(\operatorname{End}^0(A)) \subseteq Z(\operatorname{End}^0(A_{\mathfrak{p}}))$.
- In dim > 2, $D \otimes_{\mathbb{Q}} \mathbb{Q}(\pi)$ can be much smaller than $\operatorname{End}^0(A_{\mathfrak{p}})$ (no isomorphism in general).
- Still need to compare $\operatorname{End}^0(A)$ and $\operatorname{End}^0(A_{\mathfrak{p}})$.

- Need replacement for injection $\operatorname{End}^0(A) \otimes_{\mathbb{Q}} \mathbb{Q}(\pi) \hookrightarrow \operatorname{End}^0(A_{\mathfrak{p}})$. In general, we don't have $Z(\operatorname{End}^0(A)) \subseteq Z(\operatorname{End}^0(A_{\mathfrak{p}}))$.
- In dim > 2, $D \otimes_{\mathbb{Q}} \mathbb{Q}(\pi)$ can be much smaller than $\operatorname{End}^0(A_{\mathfrak{p}})$ (no isomorphism in general).
- Still need to compare $\operatorname{End}^0(A)$ and $\operatorname{End}^0(A_{\mathfrak{p}})$.
- If $Z = Z(\text{End}^0(A))$ is CM field, then $\text{ord}_{\text{Br}(Z)}[\text{End}^0(A)]$ can be arbitrarily large.

Reduction to prime subalgebras

Lemma

Let E be a division algebra with center Z and $\operatorname{ord}_{\operatorname{Br}(Z)}[E] = m$. Let $\ell \mid m$. Then, there exist

- a field F with $Z \subseteq F \subseteq E$, and
- ullet a central division F-algebra $D\subset E$ and $\operatorname{ord}_{\operatorname{Br}(F)}[D]=\ell$,

such that $[E \otimes_Z F] = [D]$ in Br(F).

Reduction to prime subalgebras

Lemma

Let E be a division algebra with center Z and $\operatorname{ord}_{\operatorname{Br}(Z)}[E] = m$. Let $\ell \mid m$. Then, there exist

- a field F with $Z \subseteq F \subset E$, and
- ullet a central division F-algebra $D\subset E$ and $\operatorname{ord}_{\operatorname{Br}(F)}[D]=\ell$,

such that $[E \otimes_Z F] = [D]$ in Br(F).

$$D o \mathsf{End}^0(A) o \mathsf{End}^0(A_{\mathfrak{p}})$$

Reduction to prime subalgebras

Lemma

Let E be a division algebra with center Z and $\operatorname{ord}_{\operatorname{Br}(Z)}[E] = m$. Let $\ell \mid m$. Then, there exist

- a field F with $Z \subseteq F \subset E$, and
- ullet a central division F-algebra $D\subset E$ and $\operatorname{ord}_{\operatorname{Br}(F)}[D]=\ell$,

such that $[E \otimes_Z F] = [D]$ in Br(F).

$$D o \mathsf{End}^0(A) o \mathsf{End}^0(A_{\mathfrak{p}})$$

Remark

If $\operatorname{End}^0(A)$ is a quaternion algebra, then $D=\operatorname{End}^0(A)$.

Theorem (F.)

Let

- $B_{/K}$ a division algebra, $F \subset B$ a field.
- $D_{/F}$ a division algebra with $\operatorname{ord}_{\operatorname{Br}(F)}[D] = \ell$ prime.

Theorem (F.)

Let

- $B_{/K}$ a division algebra, $F \subset B$ a field.
- $D_{/F}$ a division algebra with $\operatorname{ord}_{\operatorname{Br}(F)}[D] = \ell$ prime.

Then $\tilde{F} = FK \subset B$ is a field, and there exists $\iota : D \hookrightarrow B$ if and only if:

Theorem (F.)

Let

- $B_{/K}$ a division algebra, $F \subset B$ a field.
- $D_{/F}$ a division algebra with $\operatorname{ord}_{\operatorname{Br}(F)}[D] = \ell$ prime.

Then $\tilde{F} = FK \subset B$ is a field, and there exists $\iota : D \hookrightarrow B$ if and only if:

 $lackbox{0} \ d := \operatorname{ord}_{\operatorname{Br}(\tilde{F})}[B \otimes_K \tilde{F}]$ is divisible by ℓ exactly once, and

Theorem (F.)

Let

- $B_{/K}$ a division algebra, $F \subset B$ a field.
- $D_{/F}$ a division algebra with $\operatorname{ord}_{\operatorname{Br}(F)}[D] = \ell$ prime.

Then $\tilde{F} = FK \subset B$ is a field, and there exists $\iota : D \hookrightarrow B$ if and only if:

- $lackbox{0}\ d:=\operatorname{ord}_{\operatorname{Br}(\tilde{F})}[B\otimes_K \tilde{F}]$ is divisible by ℓ exactly once, and

Theorem (F.)

Let

- $B_{/K}$ a division algebra, $F \subset B$ a field.
- $D_{/F}$ a division algebra with $\operatorname{ord}_{\operatorname{Br}(F)}[D] = \ell$ prime.

Then $\tilde{F} = FK \subset B$ is a field, and there exists $\iota : D \hookrightarrow B$ if and only if:

- $lack d := \operatorname{ord}_{\operatorname{Br}(\tilde{F})}[B \otimes_K \tilde{F}]$ is divisible by ℓ exactly once, and

In that case, \tilde{F} splits neither D nor B.

Theorem (F.)

Let

- $B_{/K}$ a division algebra, $F \subset B$ a field.
- $D_{/F}$ a division algebra with $\operatorname{ord}_{\operatorname{Br}(F)}[D] = \ell$ prime.

Then $\tilde{F} = FK \subset B$ is a field, and there exists $\iota : D \hookrightarrow B$ if and only if:

- $lackbox{0}\ d:=\operatorname{ord}_{\operatorname{Br}(\tilde{F})}[B\otimes_K \tilde{F}]$ is divisible by ℓ exactly once, and

In that case, \tilde{F} splits neither D nor B.

The proof uses a characterization of Chia-Fu Yu of embeddings $D \hookrightarrow B$.

Theorem (F.)

Suppose $\operatorname{End}(A)$ is noncommutative. Then, for every prime $\mathfrak p$ of k of good reduction for A coprime to all primes of ramification of $\operatorname{End}(A) \otimes \mathbb Q$, the reduction $A_{\mathfrak p}$ splits.

Theorem (F.)

Suppose $\operatorname{End}(A)$ is noncommutative. Then, for every prime $\mathfrak p$ of k of good reduction for A coprime to all primes of ramification of $\operatorname{End}(A) \otimes \mathbb Q$, the reduction $A_{\mathfrak p}$ splits.

• Let $A_{/k}$ with noncommutative End⁰(A), with center Z.

Theorem (F.)

Suppose $\operatorname{End}(A)$ is noncommutative. Then, for every prime $\mathfrak p$ of k of good reduction for A coprime to all primes of ramification of $\operatorname{End}(A) \otimes \mathbb Q$, the reduction $A_{\mathfrak p}$ splits.

- Let $A_{/k}$ with noncommutative End⁰(A), with center Z.
- Let $\mathfrak{p} \in \Sigma_A$ over p, suppose $A_{\mathfrak{p}}$ simple.

Theorem (F.)

Suppose $\operatorname{End}(A)$ is noncommutative. Then, for every prime $\mathfrak p$ of k of good reduction for A coprime to all primes of ramification of $\operatorname{End}(A)\otimes \mathbb Q$, the reduction $A_{\mathfrak p}$ splits.

- Let $A_{/k}$ with noncommutative End⁰(A), with center Z.
- Let $\mathfrak{p} \in \Sigma_{\mathcal{A}}$ over p, suppose $A_{\mathfrak{p}}$ simple.
- Want: $End^0(A)$ ramifies at some prime over p.

Theorem (F.)

Suppose $\operatorname{End}(A)$ is noncommutative. Then, for every prime $\mathfrak p$ of k of good reduction for A coprime to all primes of ramification of $\operatorname{End}(A)\otimes \mathbb Q$, the reduction $A_{\mathfrak p}$ splits.

- Let $A_{/k}$ with noncommutative End⁰(A), with center Z.
- Let $\mathfrak{p} \in \Sigma_{\mathcal{A}}$ over p, suppose $A_{\mathfrak{p}}$ simple.
- Want: $End^0(A)$ ramifies at some prime over p.
- Choose algebra $D_{/F} \subset \operatorname{End}^0(A)$ with prime index ℓ and

$$[\operatorname{End}^0(A)\otimes_Z F]=[D]$$
 in $\operatorname{Br}(F)$.

Theorem (F.)

Suppose $\operatorname{End}(A)$ is noncommutative. Then, for every prime $\mathfrak p$ of k of good reduction for A coprime to all primes of ramification of $\operatorname{End}(A) \otimes \mathbb Q$, the reduction $A_{\mathfrak p}$ splits.

- Let $A_{/k}$ with noncommutative End⁰(A), with center Z.
- Let $\mathfrak{p} \in \Sigma_{\mathcal{A}}$ over p, suppose $A_{\mathfrak{p}}$ simple.
- Want: $End^0(A)$ ramifies at some prime over p.
- Choose algebra $D_{/F} \subset \operatorname{End}^0(A)$ with prime index ℓ and

$$[\operatorname{End}^0(A)\otimes_Z F]=[D]$$
 in $\operatorname{Br}(F)$.

• We have an embedding of division algebras

$$D o \operatorname{End}^0(A) o \operatorname{End}^0(A_{\mathfrak p}).$$

• By previous result, letting $d = \operatorname{ord}_{\mathsf{Br}(F(\pi))}[\mathsf{End}^0(A_\mathfrak{p}) \otimes_{\mathbb{Q}(\pi)} F(\pi)], \ \ell \| d$,

$$\frac{d}{\ell}[D\otimes_F F(\pi)] = \frac{d}{\ell}[\operatorname{End}^0(A_{\mathfrak{p}})\otimes_{\mathbb{Q}(\pi)} F(\pi)] \text{ in } \operatorname{Br}(F(\pi)).$$

ullet By previous result, letting $d=\operatorname{ord}_{\operatorname{Br}(F(\pi))}[\operatorname{End}^0(A_{\mathfrak{p}})\otimes_{\mathbb{Q}(\pi)}F(\pi)]$, $\ell\|d$,

$$\frac{d}{\ell}[D\otimes_F F(\pi)] = \frac{d}{\ell}[\operatorname{End}^0(A_{\mathfrak{p}})\otimes_{\mathbb{Q}(\pi)} F(\pi)] \text{ in } \operatorname{Br}(F(\pi)).$$

• Combining with $[\operatorname{End}^0(A) \otimes_{\mathbb{Z}} F] = [D]$ gives

$$\frac{d}{\ell}[\mathsf{End}^0(A)\otimes_{\mathcal{Z}}F(\pi)]=\frac{d}{\ell}[\mathsf{End}^0(A_{\mathfrak{p}})\otimes_{\mathbb{Q}(\pi)}F(\pi)].$$

ullet By previous result, letting $d=\operatorname{ord}_{\operatorname{Br}(F(\pi))}[\operatorname{End}^0(A_{\mathfrak{p}})\otimes_{\mathbb{Q}(\pi)}F(\pi)],\ \ell\|d\|$

$$\frac{d}{\ell}[D\otimes_F F(\pi)] = \frac{d}{\ell}[\operatorname{End}^0(A_{\mathfrak{p}})\otimes_{\mathbb{Q}(\pi)} F(\pi)] \text{ in } \operatorname{Br}(F(\pi)).$$

• Combining with $[\operatorname{End}^0(A) \otimes_{\mathbb{Z}} F] = [D]$ gives

$$\frac{d}{\ell}[\mathsf{End}^0(A)\otimes_{\mathcal{Z}}F(\pi)] = \frac{d}{\ell}[\mathsf{End}^0(A_\mathfrak{p})\otimes_{\mathbb{Q}(\pi)}F(\pi)].$$

• By Honda-Tate theory, $\operatorname{End}^0(A_{\mathfrak{p}})$ ramifies at places over p.

• By previous result, letting $d = \operatorname{ord}_{\mathsf{Br}(F(\pi))}[\mathsf{End}^0(A_\mathfrak{p}) \otimes_{\mathbb{Q}(\pi)} F(\pi)], \ \ell \| d$,

$$\frac{d}{\ell}[D\otimes_F F(\pi)] = \frac{d}{\ell}[\operatorname{End}^0(A_{\mathfrak{p}})\otimes_{\mathbb{Q}(\pi)} F(\pi)] \text{ in } \operatorname{Br}(F(\pi)).$$

• Combining with $[\operatorname{End}^0(A) \otimes_{\mathbb{Z}} F] = [D]$ gives

$$\frac{d}{\ell}[\mathsf{End}^0(A)\otimes_Z F(\pi)] = \frac{d}{\ell}[\mathsf{End}^0(A_\mathfrak{p})\otimes_{\mathbb{Q}(\pi)} F(\pi)].$$

- By Honda-Tate theory, $\operatorname{End}^0(A_{\mathfrak{p}})$ ramifies at places over p.
- \implies End⁰(A) ramifies at a place over p.

Abelian varieties with noncommutative endomorphism ring split modulo all but finitely many primes

Enric Florit

Universitat de Barcelona

Décimas Jornadas de Teoría de Números 10 de julio de 2024