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Elliptic Curves

Consider an elliptic curve E over a field K, for example given by a Weierstrass

equation y2 = x3 + Ax + B. Then we know the curve has at least one point, ∞,

and we define the group law by saying P + Q + R = ∞ if those three points are

aligned.

For every point P ∈ E(K̄) we can define a formal symbol [P ]. The Divisor group

of E is the free abelian group generated by those symbols:

Div(E) :=
⊕

P∈E(K̄)

[P ]Z = {
∑
i

ai[Pi] finite sum; ai ∈ Z}.

Let D =
∑
i ai[Pi]. We define two group morphisms to study divisors, the degree

and the sum:

deg(D) =
∑
i

ai ∈ Z sum(D) =
∑
i

aiPi ∈ E(K̄).

The divisors of degree 0 form a group, Div0(E). If f ∈ K̄(E)× is a rational function,

then its associated principal divisor is

div(f ) :=
∑

P∈E(K̄)

ordP (f )[P ].

Principal divisors form a subgroup of Div0(E). Quotienting Div(E) and Div0(E) by

this subgroup we get the Picard group Pic(E) and its 0-degree part Pic0(E).

The restriction of sum(·) to Div0(E) is surjective, because for every P ∈ E,

sum([P ] − [∞]) = P . Its kernel is the group of principal divisors. Therefore we

have an isomorphism

Pic0(E) ∼= E(K̄).

Torsion points

If E/K is an elliptic curve, n ≥ 1 an integer, the group of n-torsion points is

E[n] = {P ∈ E(K̄) | nP =∞}.

The group of n-torsion points has the following structure:

1. If charK = 0 or charK = p > 0 and p - n, then E[n] ∼= (Z/nZ)2.

2. If charK = p > 0 and p|n, let n = prn′ with p - n′. Then E[n] ∼= Z/nZ ×
Z/n′Z or (Z/n′Z)2.

This is proved using that the group E[n] is the kernel of the multiplication-by-n

map, which has degree n2. For example, if this map is separable, this tells us

#E[n] = # ker[n] = deg[n] = n2.

The Weil Pairing

Fix a positive integer n and assume that charK is either 0 or it doesn’t divide n. Then

E[n] ∼= (Z/nZ)2. Recall that a 0-degree divisor D has sum(D) = 0 if and only if there exists

a function f ∈ K̄(E)× with div(f ) = D.

Let T ∈ E[n]. The map [n] is surjective, and so there exists T ′ with nT ′ = T . Define the

functions f and g having divisors

div(f ) = n[T ]− n[∞]

div(g) =
∑

R∈E[n]

[T ′ + R]− [R]

Then because every preimage of T through [n] is of the form T ′ + R for some R ∈ E[n], we

have

f ◦ [n] = c · gn

with c ∈ K̄×, which we may take to be 1. Now for all X ∈ E(K̄) and all S ∈ E[n], we have

g(X + S)n = f (nX + nS) = f (nX) = g(X)n.

Therefore the quotient g(X + S)/g(X) is an nth root of unity. Because this rational map

cannot be surjective, it is constant.

This means we can define the nth Weil pairing

E[n]× E[n] −→ µn = {x ∈ K̄× | xn = 1}

(S, T ) 7−→ en(S, T ) =
g(X + S)

g(X)
.

It is bilinear, alternating and non-degenerate, and it commutes with the action of

Gal(K̄/K).

Because E[n] is a Z/nZ module of rank two, we can fix a base {P1, P2}. Then

ζ = en(P1, P2)

is a primitive nth root of unity. On the other hand, the alternating property says

en(P, P ) = 1 for every P ∈ E[n].

Finally, if Q = kP1 for some k, then en(Q,P1) = en(P1, P1)k = 1, and en(Q,P2) =

en(P1, P2)k = ζk, which is a n
gcd(n,k)

th root of unity. We can informally interpret this as

follows:

If S, T ∈ E[n], the degree of the root of unity given by the Weil pairing en(S, T ) tells us how

Z/nZ-linearly independent are S and T .

ECDH and ECDLP

We can use the group law of elliptic curves to perform Diffie-Hellman key ex-

changes: the scheme is (E/Fq, P,N), where P is a point on the curve having

order N . Then Alice’s private key is a random integer kA mod N , and her public

key is QA = kAP . If Bob’s public and private keys are QB and kB, then they can

use kAkBP as a shared secret.

If G = 〈g〉 is a finite cyclic group, and a ∈ G, then the Discrete Logarithm

Problem is to find an integer n (modulo |G|) such that

gn = a.

Generic algorithms to solve it include Baby Step-Giant Step, Pollard’s ρ and λ,

and Pohlig-Hellman.

If we work with elliptic curves, the problem is stated as P = nQ. If we could solve

discrete logarithms on elliptic curves (known as the ECDLP problem), we would

be able to get private keys from public keys.

The MOV Attack

This algorithm uses the Weil Pairing to solve the ECDLP. We assume K = Fq,
and pick m ≥ 1 big enough so that µN ⊂ F×qm.

1. Let T be a random point in E(Fqm) and let M be its order.

2. Let d = gcd(M,N). Then T1 = M
d T has order d (dividing N ) and so

T1 ∈ E[N ].

3. Compute ζ1 = eN (P, T1) and ζ2 = eN (Q, T1). Both ζi are in µN .

4. Solve the DLP ζ2 = ζk1 in F×qm. This gives k mod d.

5. Repeat until the least common multiple of the d’s is N and use the Chinese

Remainder Theorem to recover k mod N .

To solve the DLP in F×qm we use an algorithm of the Index Calculus family.

References

[1] Alfred Menezes, Scott Vanstone, and Tatsuaki Okamoto. “Reducing Elliptic Curve Logarithms

to Logarithms in a Finite Field”. In: Proceedings of the Twenty-third Annual ACM Symposium

on Theory of Computing. STOC ’91. New Orleans, Louisiana, USA: ACM, 1991, pp. 80–89.

ISBN: 0-89791-397-3. DOI: 10.1145/103418.103434. URL: http://doi.acm.org/10.1145/

103418.103434.

[2] Joseph H. Silverman. The arithmetic of elliptic curves. 2nd ed. Graduate Texts in Mathemat-

ics 106. Springer-Verlag New York, 2009. ISBN: 0387094938,9780387094939.

[3] Lawrence C. Washington. Elliptic curves: number theory and cryptography. 2nd ed.

Discrete Mathematics and Its Applications. Chapman and Hall/CRC, 2008. ISBN:

1420071467,9781420071467,9781420071474.


