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What is this talk about?

| want to explain a theorem about random walks on graphs formed
by abelian varieties.

» Joint work with Ben Smith (Inria & LIX).

» Done during my Erasmus internship, right after my Bachelor's
thesis in Spring 2020.

» — I've got a full email record of the development of this
project!
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An atlas of the Richelot isogeny graph [arXiv:2101.00917]

Automorphisms and Isogeny Graphs of Abelian Varieties,
with Applications to the Superspecial Richelot Isogeny Graph
[arXiv:2101.00919]



Existing hard problems for cryptography

Public key cryptography is based on apparently hard problems:
» Factoring integers
» Discrete logarithms in finite groups

The usual problems for public key cryptography should be easily
solved with a full-scale quantum computer.

Can we find other hard problems?



Hard problems from graphs

Problem
Given a graph G, can we find length-n paths between any two
nodes u, v € E(G)?

If this is an actual “hard” problem, then
» Nodes can be public information
» Paths between them can serve as private keys

A particular kind of graphs where path-finding is thought to be
difficult are isogeny graphs.



Isogeny-based cryptography

Fix a prime p > 3.
An isogeny graph is a finite graph G consisting of

» Elliptic curves (up to isomorphism) as nodes,

E(Z/pZ) = {(xy) € Z/pLx L/pL | y* = X+ Ax+B}U{oc}.
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Isogeny-based cryptography

Fix a prime p > 3.
An isogeny graph is a finite graph G consisting of

» Elliptic curves (up to isomorphism) as nodes,

E(Z/pZ) = {(xy) € Z/pLx L/pL | y* = X+ Ax+B}U{oc}.

» Morphisms of elliptic curves as edges [Isogenies].
Usually of fixed degree n (i.e. ¢ : Ey — Ep is n-to-1).

For each E; — E,, there is a dual E» — Ej of the same
degree.

Our graphs have ~ £ nodes.

Several proposed protocols: SIDH/SIKE, CGL, CSIDH, SQI-Sign...
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The 2-3-isogeny graph for p
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Generalisation to abelian surfaces
We consider two kinds of abelian surfaces:

» Jacobians of hyperelliptic curves (g=2),

y2:X5+34X4—|—a3X3—|—32X2—|—31X—|—80,

» Products of elliptic curves E; x Ep,

E1:y2:X3—|—A1x+Bl,
E12y2:X3—|-A2X—|—BQ.

With these we build finite graphs with surfaces as nodes and
morphisms as edges. We can only compute isogenies of degree 4,
which forms a 15-out-regular graph.

These have ~ % + O(p?) nodes, of which ~ % are products.

This graph has now been used to break SIDH!



The 4-isogeny graph for p = 47
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Finding paths
Now we have our graphs set up. How do we find length-d paths
u— v? A generic meet-in-the-middle strategy:

1. Explore & store neighborhood of u, of depth f

2. Randomly do DFS from v with length d — f.
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Finding paths

Now we have our graphs set up. How do we find length-d paths
u — v? A generic meet-in-the-middle strategy:

1. Explore & store neighborhood of u, of depth f
2. Randomly do DFS from v with length d — f.

Complexity of doing this is O(p'/?) in the elliptic curve graph, and
O(p*/?) in the abelian surface graph.



Finding paths with a distinguished subgraph

Suppose we want to find paths v — v in a graph G.

If G has a connected subgraph H where path-finding is easier, we
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Finding paths with a distinguished subgraph

Suppose we want to find paths v — v in a graph G.

If G has a connected subgraph H where path-finding is easier, we
can:

» Find a path u — u’ € H,
» Find a path v— v’/ € H,
» Find apathu’ — v’ in H.
For the abelian surface graph (Costello — Smith, 2019):
» Use subgraph of products of elliptic curves.

» Speedup from O(p*/?) to O(p).
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for u to H.

» If His too small, it will be hard to reach:

> If His too large, we will get little improvement.
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Random walks

For this strategy to work, we need to get on average short paths
for u to H.

» If His too small, it will be hard to reach;
> If His too large, we will get little improvement.

To study how good our subgraph is, we use the random walk
model:

» Start with a node ug € G

» For each n > 0, choose a neighbor upy1 of u, with probability
1
deg up*

If Gis a regular graph, we should go into H with probability %’ at
each step ~» geometric distribution.



Stationary distribution

The random walk forms a Markov chain. We can show:

Theorem
For our isogeny graph of abelian surfaces, the random walk
converges to a distribution on the nodes 7.

This distribution 7 is the eigenvector (of eigenvalue 1)
corresponding to the stochastic adjacency matrix M.

lim Moo =

n—o0

Mm = M.



An experiment

While lockdown:
1. Start with a random abelian surface.
2. Do a random walk until we hit a product of elliptic curves.
3. Write down the number of steps.
4

. Repeat.

We expected to hit E x E' with probability %.



Subject: puzzling numbers (March 26)

However, the actual distribution has parameter between 1.5/p and 2/p, which is about 5 to 6 times lower than predicted. This is
consistent across primes up to 1000 (although | don’t have much more than 20 or 30 walks recorded for primes > 200)

plt.plot(actual primes, [2/p for p in actual_primes],
plt.plot(actual_primes, geometric_parameters, 'x')
plt.show()
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Adjacency matrices

» Computing these “times until elliptic curve products” is
expensive and wasteful.

» Hence, we switched to computing adjacency matrices.

> We computed the 4-isogeny graph for each prime p up to
~ 600. This took three or four weeks.

» For comparison, we can compute elliptic product graphs up to
p ~ 30000 in an afternoon.



Subject: Jacobians (April 1)

Soon we noticed something: the adjacency matrix of our graphs
are not symmetric.

I've checked the proportion of "defective" edges in our graphs, and I've noticed
two things:

1) This proportion seems to go down with p (at p=607, only 5% of the edges have
some disagreement on the number of isogenies going each way),
2) Most (almost all) defective edges are between jacobians.

So, we'll have to take a look at jacobians, automorphisms and numbers of
isogenies. It looks like some work has been done very

recently: https:/arxiv.org/abs/2003.00633 ... On the other hand, knowing
something about these (numbers of) defective edges could be extremely helpful
in knowing the stationary distribution of random walks in J_p (| have some ideas
on how to work this out) and the geometric parameter I've talking about.

The paper is “Counting Richelot isogenies between superspecial
abelian surfaces” by Katsura and Takashima.



Neighborhoods of surfaces in the 4-isogeny graph

Generically, a surface has the following neighborhood:




Automorphism groups of surfaces

... however, surfaces can have automorphism groups. We can
describe Aut(A)/(£1):

Type-A: 1
Type-l: Cy
Type-lll: C2 Type-IV: S5
Type-V: Doyg Type-VI: Sy Type-ll: Cs

These were computed in the 1880s.



Automorphism groups of products

We also had to compute automorphism groups of E x E, using
GAP:

Type-1I: Cs

Type-IIy: Cy Type-X: C% Type-Tl193: Cy

== e

Type-2g: Cg x S3 Type-IIj 123: Ci2 Type-3iga: 022 x Cy



Automorphism groups of products

We also had to compute automorphism groups of E x E, using
GAP:

Type-1I: Cs

Type-IIy: Cy Type-X: C% Type-Tl193: Cy
Type-2g: Cg x S3 Type-IIj 123: Ci2 Type-3iga: 022 x Cy
For example, if Aut(E) = (a) with a9 = 1, then

AUt(EXE)g<a,b,7"ad:bd:Tzz]_?ab:ba,aT:Tb>

and GAP can identify Aut(E x E)/ £+ 1.
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Remarks on arrow multiplicities (May 9)

1) Every isogeny from a type-l curve to one with RA=0 must have maximal multiplicity,

2) Anisogeny ZZ/2Z7 —> S3 has to be a double isogeny

3) If we have an n-fold (n=1 or 2) isogeny ZZ/2ZZ —> (ZZ/2ZZ)"2, then there have to be 2n
isogenies coming back

4) An isogeny (ZZ/2ZZ)*2 —> S3 has to be a double isogeny.

We already know (1) is true. In the cases p =1, 19 mod 24 (i.e., when the curves D12
and S4 appear) similar conditions on the number of edges could be imposed, but | suspect they
are easy to check given the uniqueness of such curves.



A key lemma

We extract a result from observing neighborhoods:

Lemma

#Aut(A) - #{A — A = #Aut(A) - #{A - A}



Theorem (F.-Smith)

The stationary distribution of the random walk on 'g(¢; p) is given,
after normalization, by

1
A AWt (A)

Moreover, convergence to this distribution is given by

B C . [#Aut (Ao)
Py =4~ | < | )

where A, is the second largest eigenvalue of the adjacency
matrix of [;(¢; p), and Ag is the starting node in the walk.



Future work

Two questions remain:
» What is the expected distance to a product of elliptic curves?

» We have to look at “the chain of random walks that survive
forever"”, also known as a Killed process.
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What is the expected distance to a product of elliptic curves?

We have to look at “the chain of random walks that survive
forever"”, also known as a Killed process.

What is the mixing rate of the random walk? l.e., can we
compute a sharp bound on the eigenvalues of the adjacency
matrices?

We would need to propose and prove conjectures for Siegel
modular forms with level “of middle parahoric type” (cf. work
of Ibukiyama).
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