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How to find a stationary distribution
Random walks in genus 2 isogeny graphs
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What is this talk about?

I want to explain a theorem about random walks on graphs formed
by abelian varieties.
▶ Joint work with Ben Smith (Inria & LIX).
▶ Done during my Erasmus internship, right after my Bachelor’s

thesis in Spring 2020.
▶ =⇒ I’ve got a full email record of the development of this

project!

An atlas of the Richelot isogeny graph [arXiv:2101.00917]

Automorphisms and Isogeny Graphs of Abelian Varieties,
with Applications to the Superspecial Richelot Isogeny Graph
[arXiv:2101.00919]
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Existing hard problems for cryptography

Public key cryptography is based on apparently hard problems:
▶ Factoring integers
▶ Discrete logarithms in finite groups

The usual problems for public key cryptography should be easily
solved with a full-scale quantum computer.

Can we find other hard problems?
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Hard problems from graphs

Problem
Given a graph G, can we find length-n paths between any two
nodes u, v ∈ E(G)?

If this is an actual “hard” problem, then
▶ Nodes can be public information
▶ Paths between them can serve as private keys

A particular kind of graphs where path-finding is thought to be
difficult are isogeny graphs.
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Isogeny-based cryptography
Fix a prime p > 3.

An isogeny graph is a finite graph G consisting of
▶ Elliptic curves (up to isomorphism) as nodes,

E(Z/pZ) = {(x, y) ∈ Z/pZ×Z/pZ | y2 = x3+Ax+B}∪{∞}.

▶ Morphisms of elliptic curves as edges [Isogenies].

Usually of fixed degree n (i.e. ϕ : E1 → E2 is n-to-1).

For each E1 → E2, there is a dual E2 → E1 of the same
degree.

Our graphs have ∼ p
12 nodes.

Several proposed protocols: SIDH/SIKE, CGL, CSIDH, SQI-Sign...
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The 2-3-isogeny graph for p = 863
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Generalisation to abelian surfaces
We consider two kinds of abelian surfaces:
▶ Jacobians of hyperelliptic curves (g=2),

y2 = x5 + a4x4 + a3x3 + a2x2 + a1x + a0,

▶ Products of elliptic curves E1 × E2,

E1 : y2 = x3 + A1x + B1,

E1 : y2 = x3 + A2x + B2.

With these we build finite graphs with surfaces as nodes and
morphisms as edges. We can only compute isogenies of degree 4,
which forms a 15-out-regular graph.

These have ∼ p3

2880 + O(p2) nodes, of which ∼ p2

288 are products.

This graph has now been used to break SIDH!
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The 4-isogeny graph for p = 47
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Finding paths
Now we have our graphs set up. How do we find length-d paths
u → v? A generic meet-in-the-middle strategy:

1. Explore & store neighborhood of u, of depth f

2. Randomly do DFS from v with length d − f.
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Finding paths

Now we have our graphs set up. How do we find length-d paths
u → v? A generic meet-in-the-middle strategy:

1. Explore & store neighborhood of u, of depth f

2. Randomly do DFS from v with length d − f.

Complexity of doing this is O(p1/2) in the elliptic curve graph, and
O(p3/2) in the abelian surface graph.
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Finding paths with a distinguished subgraph

Suppose we want to find paths u → v in a graph G.

If G has a connected subgraph H where path-finding is easier, we
can:

▶ Find a path u → u ′ ∈ H,
▶ Find a path v → v ′ ∈ H,
▶ Find a path u ′ → v ′ in H.

For the abelian surface graph (Costello – Smith, 2019):
▶ Use subgraph of products of elliptic curves.
▶ Speedup from O(p3/2) to O(p).
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Random walks

For this strategy to work, we need to get on average short paths
for u to H.
▶ If H is too small, it will be hard to reach;
▶ If H is too large, we will get little improvement.

To study how good our subgraph is, we use the random walk
model:
▶ Start with a node u0 ∈ G
▶ For each n ≥ 0, choose a neighbor un+1 of un with probability

1
deg un

.

If G is a regular graph, we should go into H with probability #H
#G at

each step ⇝ geometric distribution.
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Random walks

For this strategy to work, we need to get on average short paths
for u to H.
▶ If H is too small, it will be hard to reach;
▶ If H is too large, we will get little improvement.

To study how good our subgraph is, we use the random walk
model:
▶ Start with a node u0 ∈ G
▶ For each n ≥ 0, choose a neighbor un+1 of un with probability

1
deg un

.

If G is a regular graph, we should go into H with probability #H
#G at

each step ⇝ geometric distribution.
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Stationary distribution

The random walk forms a Markov chain. We can show:
Theorem
For our isogeny graph of abelian surfaces, the random walk
converges to a distribution on the nodes π.

This distribution π is the eigenvector (of eigenvalue 1)
corresponding to the stochastic adjacency matrix M.

lim
n→∞

Mnφ0 = π

Mπ = M.
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An experiment

While lockdown:

1. Start with a random abelian surface.

2. Do a random walk until we hit a product of elliptic curves.

3. Write down the number of steps.

4. Repeat.

We expected to hit E × E′ with probability 10
p .
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Subject: puzzling numbers (March 26)
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Adjacency matrices

▶ Computing these “times until elliptic curve products” is
expensive and wasteful.

▶ Hence, we switched to computing adjacency matrices.
▶ We computed the 4-isogeny graph for each prime p up to

∼ 600. This took three or four weeks.
▶ For comparison, we can compute elliptic product graphs up to

p ∼ 30000 in an afternoon.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Subject: Jacobians (April 1)

Soon we noticed something: the adjacency matrix of our graphs
are not symmetric.

The paper is “Counting Richelot isogenies between superspecial
abelian surfaces” by Katsura and Takashima.
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Neighborhoods of surfaces in the 4-isogeny graph

Generically, a surface has the following neighborhood:
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Automorphism groups of surfaces

... however, surfaces can have automorphism groups. We can
describe Aut(A)/⟨±1⟩:

These were computed in the 1880s.
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Automorphism groups of products

We also had to compute automorphism groups of E × E′, using
GAP:

For example, if Aut(E) = ⟨α⟩ with αd = 1, then

Aut (E × E) ∼=
〈

a, b, τ | ad = bd = τ2 = 1, ab = ba, aτ = τb
〉

and GAP can identify Aut(E × E)/± 1.
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Neighborhoods and automorphisms
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Neighborhoods and automorphisms
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Remarks on arrow multiplicities (May 9)
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A key lemma

We extract a result from observing neighborhoods:
Lemma

#Aut(A) ·#{A′ → A} = #Aut(A′) ·#{A → A′}.
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Theorem (F.-Smith)

The stationary distribution of the random walk on Γg(ℓ; p) is given,
after normalization, by

πA ∼ 1
#Aut(A)

.

Moreover, convergence to this distribution is given by∣∣∣∣Prob[An = A]− C
#Aut(A)

∣∣∣∣ ≤ λn
⋆ ·

√
#Aut (A0)

#Aut(A)

where λ⋆ is the second largest eigenvalue of the adjacency
matrix of Γg(ℓ; p), and A0 is the starting node in the walk.
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Future work

Two questions remain:
▶ What is the expected distance to a product of elliptic curves?
▶ We have to look at “the chain of random walks that survive

forever”, also known as a Killed process.

▶ What is the mixing rate of the random walk? I.e., can we
compute a sharp bound on the eigenvalues of the adjacency
matrices?

▶ We would need to propose and prove conjectures for Siegel
modular forms with level “of middle parahoric type” (cf. work
of Ibukiyama).
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