Abelian surfaces, Siegel modular forms, and the Paramodularity Conjecture

Enric Florit Zacarías

Tutor: Xavier Guitart

Master in Advanced Mathematics - Universitat de Barcelona
July 15, 2021

Motivation: Modularity of elliptic curves

The correspondence ensures equality of L-functions.

Motivation: Modularity of elliptic curves

The correspondence ensures equality of L-functions.

Motivation: Modularity of elliptic curves

The correspondence ensures equality of L-functions.

Objectives

- State the Modularity Theorem through L-functions

Objectives

- State the Modularity Theorem through L-functions
- State Ribet's theorem for GL_{2}-type abelian varieties

Objectives

- State the Modularity Theorem through L-functions
- State Ribet's theorem for GL_{2}-type abelian varieties
- Study the construction of Siegel paramodular forms

Objectives

- State the Modularity Theorem through L-functions
- State Ribet's theorem for GL_{2}-type abelian varieties
- Study the construction of Siegel paramodular forms
- State the Paramodularity Conjecture

Objectives

- State the Modularity Theorem through L-functions
- State Ribet's theorem for GL_{2}-type abelian varieties
- Study the construction of Siegel paramodular forms
- State the Paramodularity Conjecture
- Explore the first known case of the Paramodular conjecture

Introduction

Modularity of elliptic curves

Modularity of GL_{2}-type abelian varieties

Siegel modular forms

The Paramodularity Conjecture The case of level $N=277$

Elliptic curves

- Elliptic curve E over \mathbb{Q} :

$$
Y^{2}=X^{3}+A X+B
$$

with $A, B \in \mathbb{Q}, \Delta=4 A^{3}+27 B^{2} \neq 0$.

Elliptic curves

- Elliptic curve E over \mathbb{Q} :

$$
Y^{2}=X^{3}+A X+B
$$

with $A, B \in \mathbb{Q}, \Delta=4 A^{3}+27 B^{2} \neq 0$.

- Genus 1 projective algebraic curve with a point at infinity $\infty=[0: 1: 0]$.

Elliptic curves

- Elliptic curve E over \mathbb{Q} :

$$
Y^{2}=X^{3}+A X+B
$$

with $A, B \in \mathbb{Q}, \Delta=4 A^{3}+27 B^{2} \neq 0$.

- Genus 1 projective algebraic curve with a point at infinity $\infty=[0: 1: 0]$.
- The curve has a commutative group law with ∞ the identity.

Elliptic curves

- Elliptic curve E over \mathbb{Q} :

$$
Y^{2}=X^{3}+A X+B
$$

with $A, B \in \mathbb{Q}, \Delta=4 A^{3}+27 B^{2} \neq 0$.

- Genus 1 projective algebraic curve with a point at infinity $\infty=[0: 1: 0]$.
- The curve has a commutative group law with ∞ the identity.
- We can assume $A, B, \Delta \in \mathbb{Z}$.

Point counting and L-functions

- For p prime not dividing $\Delta, E_{/ \mathbb{F}_{p}}$ is an elliptic curve.

Point counting and L-functions

- For p prime not dividing $\Delta, E_{/ \mathbb{F}_{p}}$ is an elliptic curve.
- On average, $\# E\left(\mathbb{F}_{p}\right)$ should be about $p+1$.

Point counting and L-functions

- For p prime not dividing $\Delta, E_{/ \mathbb{F}_{p}}$ is an elliptic curve.
- On average, $\# E\left(\mathbb{F}_{p}\right)$ should be about $p+1$.
- The number of points satisfies the Hasse bound

$$
\left|p+1-\# E\left(\mathbb{F}_{p}\right)\right| \leq 2 \sqrt{p}
$$

Point counting and L-functions

- For p prime not dividing $\Delta, E_{/ \mathbb{F}_{p}}$ is an elliptic curve.
- On average, $\# E\left(\mathbb{F}_{p}\right)$ should be about $p+1$.
- The number of points satisfies the Hasse bound

$$
\left|p+1-\# E\left(\mathbb{F}_{p}\right)\right| \leq 2 \sqrt{p}
$$

- Let $a_{p}:=p+1-\# E\left(\mathbb{F}_{p}\right)$. For $p \mid \Delta$, define $a_{p} \in\{-1,0,1\}$.

Point counting and L-functions

- For p prime not dividing $\Delta, E_{/ \mathbb{F}_{p}}$ is an elliptic curve.
- On average, $\# E\left(\mathbb{F}_{p}\right)$ should be about $p+1$.
- The number of points satisfies the Hasse bound

$$
\left|p+1-\# E\left(\mathbb{F}_{p}\right)\right| \leq 2 \sqrt{p}
$$

- Let $a_{p}:=p+1-\# E\left(\mathbb{F}_{p}\right)$. For $p \mid \Delta$, define $a_{p} \in\{-1,0,1\}$.
- The L-function of E is the function

$$
L(E, s)=\prod_{p \mid \Delta}\left(1-a_{p} p^{-s}\right)^{-1} \prod_{p \nmid \Delta}\left(1-a_{p} p^{-s}+p^{1-2 s}\right)^{-1}
$$

which is holomorphic for $\operatorname{Re}(s)>\frac{3}{2}$.

Modular forms

- $\mathrm{SL}_{2}(\mathbb{Z})=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, a d-b c=1\right\} \subset \operatorname{Mat}_{2 \times 2}(\mathbb{Z})$.

Modular forms

- $\mathrm{SL}_{2}(\mathbb{Z})=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, a d-b c=1\right\} \subset \operatorname{Mat}_{2 \times 2}(\mathbb{Z})$.
- The group $\mathrm{SL}_{2}(\mathbb{Z})$ acts on the upper-half plane $\mathcal{H}=\{z \in \mathbb{C} \mid \operatorname{Im} z>0\}$ by

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot z=\frac{a z+b}{c z+d}
$$

Modular forms

- $\mathrm{SL}_{2}(\mathbb{Z})=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, a d-b c=1\right\} \subset \operatorname{Mat}_{2 \times 2}(\mathbb{Z})$.
- The group $\mathrm{SL}_{2}(\mathbb{Z})$ acts on the upper-half plane $\mathcal{H}=\{z \in \mathbb{C} \mid \operatorname{Im} z>0\}$ by

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot z=\frac{a z+b}{c z+d} .
$$

- We consider the group of matrices $\Gamma_{0}(N)=\left\{\left(\begin{array}{cc}a & b \\ N c & d\end{array}\right)\right\}$.

Modular forms

$-\mathrm{SL}_{2}(\mathbb{Z})=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, a d-b c=1\right\} \subset \operatorname{Mat}_{2 \times 2}(\mathbb{Z})$.

- The group $\mathrm{SL}_{2}(\mathbb{Z})$ acts on the upper-half plane $\mathcal{H}=\{z \in \mathbb{C} \mid \operatorname{Im} z>0\}$ by

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot z=\frac{a z+b}{c z+d}
$$

- We consider the group of matrices $\Gamma_{0}(N)=\left\{\left(\begin{array}{cc}a & b \\ N c & d\end{array}\right)\right\}$.
- A holomorphic $\mathrm{f}: \mathcal{H} \rightarrow \mathbb{C}$ is a modular form of level N if

$$
\mathrm{f}(\gamma \cdot z)=(c z+d)^{2} \mathrm{f}(z)
$$

for all $\gamma \in \Gamma_{0}(N)$, and $f(z)$ satisfies some boundedness condition.

Cusp forms

- Since $T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) \in \Gamma_{0}(N), \mathrm{f}(T z)=\mathrm{f}(z+1)=\mathrm{f}(z)$. Hence modular forms have a Fourier expansion

$$
f(\tau)=\sum_{n \geq 0} a_{n} e^{2 \pi i n \tau}
$$

Cusp forms

- Since $T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) \in \Gamma_{0}(N), \mathrm{f}(T z)=\mathrm{f}(z+1)=\mathrm{f}(z)$. Hence modular forms have a Fourier expansion

$$
f(\tau)=\sum_{n \geq 0} a_{n} e^{2 \pi i n \tau}
$$

- A modular form is a cusp form if $a_{0}=0$.

Cusp forms

- Since $T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) \in \Gamma_{0}(N), \mathrm{f}(T z)=\mathrm{f}(z+1)=\mathrm{f}(z)$. Hence modular forms have a Fourier expansion

$$
f(\tau)=\sum_{n \geq 0} a_{n} e^{2 \pi i n \tau}
$$

- A modular form is a cusp form if $a_{0}=0$.
- Modular forms: $M_{2}\left(\Gamma_{0}(N)\right)$.

Cusp forms

- Since $T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) \in \Gamma_{0}(N), \mathrm{f}(T z)=\mathrm{f}(z+1)=\mathrm{f}(z)$. Hence modular forms have a Fourier expansion

$$
f(\tau)=\sum_{n \geq 0} a_{n} e^{2 \pi i n \tau}
$$

- A modular form is a cusp form if $a_{0}=0$.
- Modular forms: $M_{2}\left(\Gamma_{0}(N)\right)$.
- Cusp forms: $S_{2}\left(\Gamma_{0}(N)\right)$ (both are \mathbb{C}-vector spaces).

Hecke operators and L-functions

- Given p prime, the Hecke operator $T_{p}: M_{2}\left(\Gamma_{0}(N)\right) \rightarrow M_{2}\left(\Gamma_{0}(N)\right)$ preserves the space of cusp forms.

Hecke operators and L-functions

- Given p prime, the Hecke operator $T_{p}: M_{2}\left(\Gamma_{0}(N)\right) \rightarrow M_{2}\left(\Gamma_{0}(N)\right)$ preserves the space of cusp forms.
- If f is a simultaneous eigenvector for all the T_{p} and $a_{1}(\mathrm{f})=1$,

$$
T_{p}(\mathrm{f})=a_{p}(f) \mathrm{f}
$$

Hecke operators and L-functions

- Given p prime, the Hecke operator $T_{p}: M_{2}\left(\Gamma_{0}(N)\right) \rightarrow M_{2}\left(\Gamma_{0}(N)\right)$ preserves the space of cusp forms.
- If f is a simultaneous eigenvector for all the T_{p} and $a_{1}(\mathrm{f})=1$,

$$
T_{p}(\mathrm{f})=a_{p}(f) \mathrm{f}
$$

- The L-function of f is given by

$$
\begin{aligned}
L(f, s) & =\prod_{p \mid N}\left(1-a_{p}(f) p^{-s}\right)^{-1} \prod_{p \nmid N}\left(1-a_{p}(f) p^{-s}+p^{1-2 s}\right)^{-1} \\
& =\sum_{n \geq 1} \frac{a_{n}(f)}{n^{s}}
\end{aligned}
$$

Modularity of Elliptic curves

Modularity Theorem
Let $E_{/ Q}$ be an elliptic curve of conductor N. Then there is an eigenform $f \in S_{2}\left(\Gamma_{0}(N)\right)$ such that

$$
L(f, s)=L(E, s)
$$

Modularity of Elliptic curves

Modularity Theorem

Let $E_{/ Q}$ be an elliptic curve of conductor N. Then there is an eigenform $f \in S_{2}\left(\Gamma_{0}(N)\right)$ such that

$$
L(f, s)=L(E, s)
$$

- $L(E, s)$ is a meromorphic function on all of \mathbb{C}

Modularity of Elliptic curves

Modularity Theorem
Let $E_{/ \mathbb{Q}}$ be an elliptic curve of conductor N. Then there is an eigenform $f \in S_{2}\left(\Gamma_{0}(N)\right)$ such that

$$
L(f, s)=L(E, s)
$$

- $L(E, s)$ is a meromorphic function on all of \mathbb{C}
- Birch and Swinnerton-Dyer conjecture

$$
\operatorname{rank}_{\mathbb{Z}} E(\mathbb{Q})=\operatorname{ord}_{s=1} L(E, s)
$$

Modularity of Elliptic curves

Modularity Theorem

Let $E_{/ Q}$ be an elliptic curve of conductor N. Then there is an eigenform $f \in S_{2}\left(\Gamma_{0}(N)\right)$ such that

$$
L(f, s)=L(E, s)
$$

- $L(E, s)$ is a meromorphic function on all of \mathbb{C}
- Birch and Swinnerton-Dyer conjecture
- Heegner points

Modularity of Elliptic curves

Modularity Theorem

Let $E_{/ Q}$ be an elliptic curve of conductor N. Then there is an eigenform $f \in S_{2}\left(\Gamma_{0}(N)\right)$ such that

$$
L(f, s)=L(E, s)
$$

- $L(E, s)$ is a meromorphic function on all of \mathbb{C}
- Birch and Swinnerton-Dyer conjecture
- Heegner points
- Fermat's Last Theorem

Modularity of Elliptic curves

Modularity Theorem

Let $E_{/ Q}$ be an elliptic curve of conductor N. Then there is an eigenform $f \in S_{2}\left(\Gamma_{0}(N)\right)$ such that

$$
L(f, s)=L(E, s)
$$

- $L(E, s)$ is a meromorphic function on all of \mathbb{C}
- Birch and Swinnerton-Dyer conjecture
- Heegner points
- Fermat's Last Theorem
- $a^{\ell}+b^{\ell}=c^{\ell}$
- $\rightsquigarrow E: y^{2}=x\left(x-a^{\ell}\right)\left(x+b^{\ell}\right)$

Modularity of Elliptic curves

Modularity Theorem

Let $E_{/ Q}$ be an elliptic curve of conductor N. Then there is an eigenform $f \in S_{2}\left(\Gamma_{0}(N)\right)$ such that

$$
L(f, s)=L(E, s)
$$

- $L(E, s)$ is a meromorphic function on all of \mathbb{C}
- Birch and Swinnerton-Dyer conjecture
- Heegner points
- Fermat's Last Theorem
- $a^{\ell}+b^{\ell}=c^{\ell}$
- $\rightsquigarrow E: y^{2}=x\left(x-a^{\ell}\right)\left(x+b^{\ell}\right)$
- $E \rightsquigarrow f_{E}$

Modularity of Elliptic curves

Modularity Theorem

Let $E_{/ Q}$ be an elliptic curve of conductor N. Then there is an eigenform $f \in S_{2}\left(\Gamma_{0}(N)\right)$ such that

$$
L(f, s)=L(E, s)
$$

- $L(E, s)$ is a meromorphic function on all of \mathbb{C}
- Birch and Swinnerton-Dyer conjecture
- Heegner points
- Fermat's Last Theorem
- $a^{\ell}+b^{\ell}=c^{\ell}$
- $\rightsquigarrow E: y^{2}=x\left(x-a^{\ell}\right)\left(x+b^{\ell}\right)$
- $E \rightsquigarrow f_{E} \in S_{2}\left(\Gamma_{0}(2)\right)$

Modularity of Elliptic curves

Modularity Theorem

Let $E_{/ Q}$ be an elliptic curve of conductor N. Then there is an eigenform $f \in S_{2}\left(\Gamma_{0}(N)\right)$ such that

$$
L(f, s)=L(E, s)
$$

- $L(E, s)$ is a meromorphic function on all of \mathbb{C}
- Birch and Swinnerton-Dyer conjecture
- Heegner points
- Fermat's Last Theorem
- $a^{\ell}+b^{\ell}=c^{\ell}$
- $\rightsquigarrow E: y^{2}=x\left(x-a^{\ell}\right)\left(x+b^{\ell}\right)$
- $E \rightsquigarrow f_{E} \in S_{2}\left(\Gamma_{0}(2)\right)=\{0\}(!!)$

Introduction

Modularity of elliptic curves

Modularity of GL_{2}-type abelian varieties

Siegel modular forms

The Paramodularity Conjecture The case of level $N=277$

Abelian varieties

- An abelian variety $A_{/ \mathbb{Q}}$ is a projective variety such that $A(\overline{\mathbb{Q}})$ has a group structure induced by algebraic maps $m: A \times A \rightarrow A, i: A \rightarrow A$.

Abelian varieties

- An abelian variety $A_{/ \mathbb{Q}}$ is a projective variety such that $A(\overline{\mathbb{Q}})$ has a group structure induced by algebraic maps $m: A \times A \rightarrow A, i: A \rightarrow A$.
- The complex points $A(\mathbb{C})$ are isomorphic to a complex torus,

$$
A(\mathbb{C}) \cong \mathbb{C}^{d} / \Lambda
$$

for $d=\operatorname{dim} A$ and some discrete subgroup $\Lambda \subset \mathbb{C}^{d}$ of rank $2 d$.

Abelian varieties

- An abelian variety $A_{/ \mathbb{Q}}$ is a projective variety such that $A(\overline{\mathbb{Q}})$ has a group structure induced by algebraic maps $m: A \times A \rightarrow A, i: A \rightarrow A$.
- The complex points $A(\mathbb{C})$ are isomorphic to a complex torus,

$$
A(\mathbb{C}) \cong \mathbb{C}^{d} / \Lambda
$$

for $d=\operatorname{dim} A$ and some discrete subgroup $\Lambda \subset \mathbb{C}^{d}$ of rank $2 d$.

- Given a Riemann surface C, its Jacobian is the quotient

$$
\operatorname{Jac}(C)=\Omega^{1}(C)^{\vee} / H_{1}(C, \mathbb{Z})
$$

where $\Omega^{1}(C)$ is the \mathbb{C}-vector space of holomorphic differentials, and $H_{1}(C, \mathbb{Z})$ is the integral homology on C.

L-functions

- For each prime p, the p th Euler factor of $A_{\mathbb{Q}}$ is a polynomial

$$
L_{p}(A, T) \in 1+T \mathbb{C}[T]
$$

of degree $2 \operatorname{dim} A$.

L-functions

- For each prime p, the p th Euler factor of $A_{\mathbb{Q}}$ is a polynomial

$$
L_{p}(A, T) \in 1+T \mathbb{C}[T]
$$

of degree $2 \operatorname{dim} A$.

- For an elliptic curve E and a good prime $p \nmid \Delta$,

$$
L_{p}(E, T)=1-a_{p} T+p T^{2}
$$

L-functions

- For each prime p, the p th Euler factor of $A_{\mathbb{Q}}$ is a polynomial

$$
L_{p}(A, T) \in 1+T \mathbb{C}[T]
$$

of degree $2 \operatorname{dim} A$.

- For an elliptic curve E and a good prime $p \nmid \Delta$, $L_{p}(E, T)=1-a_{p} T+p T^{2}$.
- We use the Euler factors to define L-function of A,

$$
L(A, s)=\prod_{p} L_{p}\left(A, p^{-s}\right)^{-1}
$$

It converges in a right-hand plane $\left\{s \in \mathbb{C} \left\lvert\, \operatorname{Re}(s)>\frac{3}{2}\right.\right\}$.

$X_{0}(N)$ and $J_{0}(N)$

- The quotient $\Gamma_{0}(N) \backslash \mathcal{H}$ can be compactified to form a compact Riemann surface,

$$
X_{0}(N):=\Gamma_{0}(N) \backslash \mathcal{H}^{*} .
$$

$X_{0}(N)$ and $J_{0}(N)$

- The quotient $\Gamma_{0}(N) \backslash \mathcal{H}$ can be compactified to form a compact Riemann surface,

$$
X_{0}(N):=\Gamma_{0}(N) \backslash \mathcal{H}^{*} .
$$

- $X_{0}(N)$ has an algebraic model over \mathbb{Q}, the modular curve of level N.

$X_{0}(N)$ and $J_{0}(N)$

- The quotient $\Gamma_{0}(N) \backslash \mathcal{H}$ can be compactified to form a compact Riemann surface,

$$
X_{0}(N):=\Gamma_{0}(N) \backslash \mathcal{H}^{*} .
$$

- $X_{0}(N)$ has an algebraic model over \mathbb{Q}, the modular curve of level N.
- The Jacobian of $X_{0}(N)$ is denoted by $J_{0}(N)$. We have an isomorphism

$$
\Omega^{1}\left(X_{0}(N)\right) \cong S_{2}\left(\Gamma_{0}(N)\right),
$$

which gives us the expression

$$
J_{0}(N) \cong S_{2}\left(\Gamma_{0}(N)\right)^{\vee} / H_{1}\left(X_{0}(N), \mathbb{Z}\right)
$$

Eichler-Shimura theorem

Theorem

- Let $f \in S_{2}\left(\Gamma_{0}(N)\right)$ be a normalized eigenform with Fourier expansion $\sum_{n} a_{n} q^{n}$.

Eichler-Shimura theorem

Theorem

- Let $f \in S_{2}\left(\Gamma_{0}(N)\right)$ be a normalized eigenform with Fourier expansion $\sum_{n} a_{n} q^{n}$.
- Let $K_{f}=\mathbb{Q}\left(\left\{a_{n}\right\}\right)$ be the number field generated by its coefficients.

Eichler-Shimura theorem

Theorem

- Let $f \in S_{2}\left(\Gamma_{0}(N)\right)$ be a normalized eigenform with Fourier expansion $\sum_{n} a_{n} q^{n}$.
- Let $K_{f}=\mathbb{Q}\left(\left\{a_{n}\right\}\right)$ be the number field generated by its coefficients.
- Then there exists an abelian variety A_{f} of dimension $\left[K_{f}: \mathbb{Q}\right]$, such that

$$
L\left(A_{f}, s\right)=\prod_{\sigma: K_{f} \hookrightarrow \mathbb{C}} L\left(f^{\sigma}, s\right) .
$$

Eichler-Shimura theorem

Theorem

- Let $f \in S_{2}\left(\Gamma_{0}(N)\right)$ be a normalized eigenform with Fourier expansion $\sum_{n} a_{n} q^{n}$.
- Let $K_{f}=\mathbb{Q}\left(\left\{a_{n}\right\}\right)$ be the number field generated by its coefficients.
- Then there exists an abelian variety A_{f} of dimension $\left[K_{f}: \mathbb{Q}\right]$, such that

$$
L\left(A_{f}, s\right)=\prod_{\sigma: K_{f} \hookrightarrow \mathbb{C}} L\left(f^{\sigma}, s\right) .
$$

- In particular, if f has integer Fourier coefficients then A_{f} is an elliptic curve.

Idea of proof

- Let $\mathbb{T}_{\mathbb{Z}}$ be the \mathbb{Z}-algebra generated by the operators T_{p}, acting on $S_{2}\left(\Gamma_{0}(N)\right)$.

Idea of proof

- Let $\mathbb{T}_{\mathbb{Z}}$ be the \mathbb{Z}-algebra generated by the operators T_{p}, acting on $S_{2}\left(\Gamma_{0}(N)\right)$.
- Given an eigenform $f \in S_{2}\left(\Gamma_{0}(N)\right)$, we have a homomorphism

$$
\lambda_{f}: \mathbb{T}_{\mathbb{Z}} \rightarrow \mathbb{C}
$$

such that $T_{p} f=\lambda_{f}\left(T_{p}\right) f$.

Idea of proof

- Let $\mathbb{T}_{\mathbb{Z}}$ be the \mathbb{Z}-algebra generated by the operators T_{p}, acting on $S_{2}\left(\Gamma_{0}(N)\right)$.
- Given an eigenform $f \in S_{2}\left(\Gamma_{0}(N)\right)$, we have a homomorphism

$$
\lambda_{f}: \mathbb{T}_{\mathbb{Z}} \rightarrow \mathbb{C}
$$

such that $T_{p} f=\lambda_{f}\left(T_{p}\right) f$.

- $\mathbb{T}_{\mathbb{Z}}$ acts on $J_{0}(N) \cong S_{2}\left(\Gamma_{0}(N)\right)^{\vee} / H_{1}$ by duality.

Idea of proof

- Let $\mathbb{T}_{\mathbb{Z}}$ be the \mathbb{Z}-algebra generated by the operators T_{p}, acting on $S_{2}\left(\Gamma_{0}(N)\right)$.
- Given an eigenform $f \in S_{2}\left(\Gamma_{0}(N)\right)$, we have a homomorphism

$$
\lambda_{f}: \mathbb{T}_{\mathbb{Z}} \rightarrow \mathbb{C}
$$

such that $T_{p} f=\lambda_{f}\left(T_{p}\right) f$.

- $\mathbb{T}_{\mathbb{Z}}$ acts on $J_{0}(N) \cong S_{2}\left(\Gamma_{0}(N)\right)^{\vee} / H_{1}$ by duality.
- Let $I_{f}=\operatorname{ker} \lambda_{f}$. Then the quotient

$$
A_{f}:=J_{0}(N) / I_{f} J_{0}(N)
$$

is an abelian variety.

Idea of proof

- Let $\mathbb{T}_{\mathbb{Z}}$ be the \mathbb{Z}-algebra generated by the operators T_{p}, acting on $S_{2}\left(\Gamma_{0}(N)\right)$.
- Given an eigenform $f \in S_{2}\left(\Gamma_{0}(N)\right)$, we have a homomorphism

$$
\lambda_{f}: \mathbb{T}_{\mathbb{Z}} \rightarrow \mathbb{C}
$$

such that $T_{p} f=\lambda_{f}\left(T_{p}\right) f$.

- $\mathbb{T}_{\mathbb{Z}}$ acts on $J_{0}(N) \cong S_{2}\left(\Gamma_{0}(N)\right)^{\vee} / H_{1}$ by duality.
- Let $I_{f}=\operatorname{ker} \lambda_{f}$. Then the quotient

$$
A_{f}:=J_{0}(N) / I_{f} J_{0}(N)
$$

is an abelian variety.

- Hard part: prove equality of L-functions.

Modularity of GL_{2}-type abelian varieties

- Given an eigenform f, the endomorphism ring of the variety A_{f} satisfies

$$
\operatorname{End}\left(A_{f}\right) \otimes \mathbb{Q} \cong K_{f} .
$$

- An abelian variety $A_{/ \mathbb{Q}}$ is said to be of GL_{2}-type if $\operatorname{End}(A) \otimes \mathbb{Q}$ contains a number field of $\operatorname{degree} \operatorname{dim} A$.

Modularity of GL_{2}-type abelian varieties

- Given an eigenform f, the endomorphism ring of the variety A_{f} satisfies

$$
\operatorname{End}\left(A_{f}\right) \otimes \mathbb{Q} \cong K_{f} .
$$

- An abelian variety $A_{\mathbb{Q}}$ is said to be of GL_{2}-type if $\operatorname{End}(A) \otimes \mathbb{Q}$ contains a number field of degree $\operatorname{dim} A$.

Theorem (Ribet)
Let $A_{\mathbb{Q}}$ be an abelian variety of GL_{2}-type of conductor N with endomorphism algebra K. There exists a classical modular eigenform $f \in S_{2}\left(\Gamma_{1}(N)\right)$ such that

$$
L(A, s)=\prod_{\sigma: K \hookrightarrow \mathbb{C}} L\left(f^{\sigma}, s\right)
$$

Introduction

Modularity of elliptic curves

Modularity of GL_{2}-type abelian varieties

Siegel modular forms

The Paramodularity Conjecture The case of level $N=277$

Siegel upper half space, symplectic action

Let's build a higher-dimensional analogy of modular forms:

- First, the space: the Siegel upper-half space is

$$
\mathcal{H}_{2}=\left\{Z \in \operatorname{Mat}_{2 \times 2}^{\text {sym }}(\mathbb{C}) \mid \operatorname{Im} Z>0\right\} .
$$

(indeed $\left.\mathcal{H}_{1}=\mathcal{H}\right)$.

Siegel upper half space, symplectic action

Let's build a higher-dimensional analogy of modular forms:

- First, the space: the Siegel upper-half space is

$$
\mathcal{H}_{2}=\left\{Z \in \operatorname{Mat}_{2 \times 2}^{\text {sym }}(\mathbb{C}) \mid \operatorname{Im} Z>0\right\} .
$$

(indeed $\mathcal{H}_{1}=\mathcal{H}$).

- The symplectic group is

$$
\mathrm{Sp}_{4}(\mathbb{R})=\left\{M \in \mathrm{GL}_{4}(\mathbb{R}) \left\lvert\, M^{T}\left(\begin{array}{cc}
0 & I_{2} \\
-I_{2} & 0
\end{array}\right) M=\left(\begin{array}{cc}
0 & I_{2} \\
-I_{2} & 0
\end{array}\right)\right.\right\}
$$

Siegel upper half space, symplectic action

Let's build a higher-dimensional analogy of modular forms:

- First, the space: the Siegel upper-half space is

$$
\mathcal{H}_{2}=\left\{Z \in \operatorname{Mat}_{2 \times 2}^{\text {sym }}(\mathbb{C}) \mid \operatorname{Im} Z>0\right\} .
$$

(indeed $\mathcal{H}_{1}=\mathcal{H}$).

- The symplectic group is

$$
\mathrm{Sp}_{4}(\mathbb{R})=\left\{M \in \mathrm{GL}_{4}(\mathbb{R}) \left\lvert\, M^{T}\left(\begin{array}{cc}
0 & I_{2} \\
-I_{2} & 0
\end{array}\right) M=\left(\begin{array}{cc}
0 & I_{2} \\
-I_{2} & 0
\end{array}\right)\right.\right\} .
$$

- $\mathrm{Sp}_{4}(\mathbb{R})$ acts on \mathcal{H}_{2} as

$$
Z \mapsto\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \cdot Z=(A Z+B)(C Z+D)^{-1}
$$

Siegel Paramodular Forms

Let $N \in \mathbb{Z}_{\geq 1}$. Our substitute for $\Gamma_{0}(N)$ is the level N paramodular group

$$
K(N)=\left(\begin{array}{cccc}
* & N * & * & * \\
* & * & * & * / N \\
* & N * & * & * \\
N * & N * & N * & *
\end{array}\right) \cap \operatorname{Sp}_{4}(\mathbb{Q})
$$

where $* \in \mathbb{Z}$.

Siegel Paramodular Forms

Let $N \in \mathbb{Z}_{\geq 1}$. Our substitute for $\Gamma_{0}(N)$ is the level N paramodular group

$$
K(N)=\left(\begin{array}{cccc}
* & N * & * & * \\
* & * & * & * / N \\
* & N * & * & * \\
N * & N * & N * & *
\end{array}\right) \cap \operatorname{Sp}_{4}(\mathbb{Q})
$$

where $* \in \mathbb{Z}$.
A Siegel paramodular form of level N and weight 2 is a holomorphic $\mathrm{f}: \mathcal{H}_{2} \rightarrow \mathbb{C}$ satisfying

- $f(M Z)=\operatorname{det}(C Z+D)^{2} f(Z)$ for all $M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in K(N)$.
- $\mathrm{f}(Z)$ satisfies a boundedness condition.

Koecher principle

Theorem

A paramodular form $f \in M_{2}(K(N))$ has a Fourier expansion of the form

$$
f\left(\begin{array}{ll}
\tau & z \\
z & \omega
\end{array}\right)=\sum_{T \geq 0} a(T ; f) e^{2 \pi i(n \tau+r z+N m \omega)}
$$

where T runs over positive semidefinite matrices of the form

$$
T=\left(\begin{array}{cc}
n & r / 2 \\
r / 2 & N m
\end{array}\right), n, r, m \in \mathbb{Z}
$$

Koecher principle

Theorem

A paramodular form $f \in M_{2}(K(N))$ has a Fourier expansion of the form

$$
f\left(\begin{array}{cc}
\tau & z \\
z & \omega
\end{array}\right)=\sum_{T \geq 0} a(T ; f) e^{2 \pi i(n \tau+r z+N m \omega)}
$$

where T runs over positive semidefinite matrices of the form

$$
T=\left(\begin{array}{cc}
n & r / 2 \\
r / 2 & N m
\end{array}\right), n, r, m \in \mathbb{Z}
$$

- There is a notion of cusp forms, $S_{2}(K(N))$.
- They satisfy $a(T ; f)=0$ for $\operatorname{det} T=0$.

Hecke operators and L-functions

- One defines Hecke operators

$$
\begin{aligned}
T(p): & M_{2}(K(N))
\end{aligned} \rightarrow M_{2}(K(N)),
$$

that preserve cusp forms.

Hecke operators and L-functions

- One defines Hecke operators

$$
\begin{aligned}
& T(p): M_{2}(K(N)) \rightarrow M_{2}(K(N)), \\
& T_{1}\left(p^{2}\right): M_{2}(K(N)) \rightarrow M_{2}(K(N))
\end{aligned}
$$

that preserve cusp forms.

- If f is a simultaneous eigenform for all $T(p), T_{1}\left(p^{2}\right)$, its eigenvalues let us define spinor Euler factors

$$
Q_{p}(f, T) \in 1+T \mathbb{C}[T], \quad \operatorname{deg} Q_{p}=4
$$

Hecke operators and L-functions

- One defines Hecke operators

$$
\begin{aligned}
& T(p): M_{2}(K(N)) \rightarrow M_{2}(K(N)), \\
& T_{1}\left(p^{2}\right): M_{2}(K(N)) \rightarrow M_{2}(K(N))
\end{aligned}
$$

that preserve cusp forms.

- If f is a simultaneous eigenform for all $T(p), T_{1}\left(p^{2}\right)$, its eigenvalues let us define spinor Euler factors

$$
Q_{p}(f, T) \in 1+T \mathbb{C}[T], \quad \operatorname{deg} Q_{p}=4
$$

- We package the Euler factors into the L-function of f ,

$$
L(\mathrm{f}, \mathrm{~s})=\prod_{p} Q_{p}\left(1, p^{-s}\right)^{-1}
$$

Gritsenko lift

- Jacobi forms: holomorphic functions

$$
\begin{gathered}
\phi: \mathcal{H} \times \mathbb{C} \rightarrow \mathbb{C} \\
\text { with symmetries with respect to } \Gamma_{\infty} \subset \operatorname{Sp}_{4}(\mathbb{Z})
\end{gathered}
$$

Gritsenko lift

- Jacobi forms: holomorphic functions

$$
\phi: \mathcal{H} \times \mathbb{C} \rightarrow \mathbb{C}
$$

with symmetries with respect to $\Gamma_{\infty} \subset \operatorname{Sp}_{4}(\mathbb{Z})$.

- Notation: $J_{k, N}$, cusp forms $J_{k, N}^{\text {cusp }}$.

Gritsenko lift

- Jacobi forms: holomorphic functions

$$
\phi: \mathcal{H} \times \mathbb{C} \rightarrow \mathbb{C}
$$

with symmetries with respect to $\Gamma_{\infty} \subset \operatorname{Sp}_{4}(\mathbb{Z})$.

- Notation: $J_{k, N}$, cusp forms $J_{k, N}^{\text {cusp }}$.

Gritsenko lift

- Jacobi forms: holomorphic functions

$$
\phi: \mathcal{H} \times \mathbb{C} \rightarrow \mathbb{C}
$$

with symmetries with respect to $\Gamma_{\infty} \subset \operatorname{Sp}_{4}(\mathbb{Z})$.

- Notation: $J_{k, N}$, cusp forms $J_{k, N}^{\text {cusp }}$.

Theorem (Gritsenko)
There is a lift

$$
\text { Grit : J J cusp } \rightarrow S_{2}(K(N)) .
$$

The paramodular form $\operatorname{Grit}(\phi)$ is given explicitly in terms of the Fourier expansion of ϕ.

Introduction

Modularity of elliptic curves

Modularity of GL_{2}-type abelian varieties

Siegel modular forms

The Paramodularity Conjecture
The case of level $N=277$

Paramodularity Conjecture

Let $A_{\mathbb{Q}}$ be an abelian surface of conductor N with $\operatorname{End}(A)=\mathbb{Z}$. There exists a Siegel paramodular eigenform $f_{A} \in S_{2}(K(N))$ which is not a Gritsenko lift such that

$$
L(A, s)=L\left(f_{A}, s\right)
$$

Paramodularity Conjecture

Let $A_{\mathbb{Q}}$ be an abelian surface of conductor N with $\operatorname{End}(A)=\mathbb{Z}$. There exists a Siegel paramodular eigenform $f_{A} \in S_{2}(K(N))$ which is not a Gritsenko lift such that

$$
L(A, s)=L\left(f_{A}, s\right)
$$

Conversely, given a nonlift Siegel paramodular eigenform $f \in S_{2}(K(N))$ of squarefree level N, there is an abelian surface $A_{f / \mathbb{Q}}$ of conductor N with $\operatorname{End}(A)=\mathbb{Z}$ and such that

$$
L(f, s)=L\left(A_{f}, s\right)
$$

Introduction

Modularity of elliptic curves

Modularity of GL_{2}-type abelian varieties

Siegel modular forms

The Paramodularity Conjecture
The case of level $N=277$

Example: the nonlift of level 277

Theorem (Poor-Yuen)
The subspace of Gritsenko lifts of $S_{2}(K(277))$ has dimension 10, whereas $\operatorname{dim} S_{2}(K(277))=11$. The form f_{277} is a Hecke eigenform with rational eigenvalues which is not a Gritsenko lift, given as a degree-2 rational function of Gritsenko lifts $G_{1}, \ldots, G_{10} \in S_{2}(K(277))$.

Example: the nonlift of level 277

$$
\begin{aligned}
f_{277}=(& -14 G_{1}^{2}-20 G_{8} G_{2}+11 G_{9} G_{2}+6 G_{2}^{2}-30 G_{7} G_{10}+15 G_{9} G_{10} \\
& +15 G_{10} G_{1}-30 G_{10} G_{2}-30 G_{10} G_{3}+5 G_{4} G_{5}+6 G_{4} G_{6}+17 G_{4} G_{7} \\
& -3 G_{4} G_{8}-5 G_{4} G_{9}-5 G_{5} G_{6}+20 G_{5} G_{7}-5 G_{5} G_{8}-10 G_{5} G_{9}-3 G_{6}^{2} \\
& +13 G_{6} G_{7}+3 G_{6} G_{8}-10 G_{6} G_{9}-22 G_{7}^{2}+G_{7} G_{8}+15 G_{7} G_{9}+6 G_{8}^{2} \\
& -4 G_{8} G_{9}-2 G_{9}^{2}+20 G_{1} G_{2}-28 G_{3} G_{2}+23 G_{4} G_{2}+7 G_{6} G_{2} \\
& -31 G_{7} G_{2}+15 G_{5} G_{2}+45 G_{1} G_{3}-10 G_{1} G_{5}-2 G_{1} G_{4}-13 G_{1} G_{6} \\
& -7 G_{1} G_{8}+39 G_{1} G_{7}-16 G_{1} G_{9}-34 G_{3}^{2}+8 G_{3} G_{4}+20 G_{3} G_{5} \\
& \left.+22 G_{3} G_{6}+10 G_{3} G_{8}+21 G_{3} G_{9}-56 G_{3} G_{7}-3 G_{4}^{2}\right) / \\
& \left(-G_{4}+G_{6}+2 G_{7}+G_{8}-G_{9}+2 G_{3}-3 G_{2}-G_{1}\right)
\end{aligned}
$$

Paramodularity for $N=277$

Theorem (Brumer-Pacetti-Poor-Tornaría-Voight-Yuen)
Let C be the curve over \mathbb{Q} defined by

$$
C: y^{2}+\left(x^{3}+x^{2}+x+1\right) y=-x^{2}-x
$$

Let A be the Jacobian of C, which has $\operatorname{End}(A)=\mathbb{Z}$ and $N=277$.

Paramodularity for $N=277$

Theorem (Brumer-Pacetti-Poor-Tornaría-Voight-Yuen)

Let C be the curve over \mathbb{Q} defined by

$$
C: y^{2}+\left(x^{3}+x^{2}+x+1\right) y=-x^{2}-x
$$

Let A be the Jacobian of C, which has $\operatorname{End}(A)=\mathbb{Z}$ and $N=277$. Let $f_{277} \in S_{2}(K(277))$ be the nonlift Siegel paramodular form of level 277.

Paramodularity for $N=277$

Theorem (Brumer-Pacetti-Poor-Tornaría-Voight-Yuen)

Let C be the curve over \mathbb{Q} defined by

$$
C: y^{2}+\left(x^{3}+x^{2}+x+1\right) y=-x^{2}-x
$$

Let A be the Jacobian of C, which has $\operatorname{End}(A)=\mathbb{Z}$ and $N=277$. Let $f_{277} \in S_{2}(K(277))$ be the nonlift Siegel paramodular form of level 277. For all primes p, we have

$$
L_{p}(A, T)=Q_{p}\left(f_{277}, T\right)
$$

In particular $L(A, s)=L\left(f_{277}, s\right)$ and A is paramodular.

Strategy of proof

- Generalized Faltings-Serre method to check

$$
L_{p}(A, T)=Q_{p}\left(f_{277}, T\right)
$$

for all primes p.

- The method reduces the check to finitely many primes.

Strategy of proof

- Generalized Faltings-Serre method to check

$$
L_{p}(A, T)=Q_{p}\left(f_{277}, T\right)
$$

for all primes p.

- The method reduces the check to finitely many primes.
- Write

$$
\begin{cases}L_{p}(A, T) & =1-a_{p}(A) T+\cdots+p^{2} T^{4} \\ Q_{p}\left(f_{277}, T\right) & =1-a_{p}\left(f_{277}\right) T+\cdots+p^{2} T^{4}\end{cases}
$$

It is enough to compute $a_{p}(A)$ and $a_{p}\left(f_{277}\right)$ for all primes

$$
p \in\{2,3,5, \ldots, 41,43\} .
$$

Computation of $a_{p}(A)$: point counting

- We have $A=\operatorname{Jac}(C)$, with

$$
C: y^{2}+\left(x^{3}+x^{2}+x+1\right) y=-x^{2}-x
$$

- If $\tilde{C}_{/ \mathbb{F}_{p}}$ is the reduction of C modulo p, then

$$
a_{p}(A)=p+1-\# \tilde{C}\left(\mathbb{F}_{p}\right) .
$$

Computation of $a_{p}(A)$: point counting

- We have $A=\operatorname{Jac}(C)$, with

$$
C: y^{2}+\left(x^{3}+x^{2}+x+1\right) y=-x^{2}-x
$$

- If $\tilde{C}_{/ \mathbb{F}_{p}}$ is the reduction of C modulo p, then

$$
a_{p}(A)=p+1-\# \tilde{C}\left(\mathbb{F}_{p}\right)
$$

- This can be done e.g. with Sage:

```
    SageMath version 9.2, Release Date: 2020-10-24
    Using Python 3.8.5. Type "help()" for help.
```

```
[sage: R.<x> = QQ[]
[sage: C = HyperellipticCurve(-x^2 - x, x^3 + x^2 + x + 1)
[sage: C.change_ring(GF(2)).count_points()
[5]
[sage: C.change_ring(GF(3)).count_points()
[5]
[sage: C.change_ring(GF(5)).count_points()
    [7]
sage:
```


Computation of $a_{p}\left(f_{277}\right)$

- The values $a_{p}\left(f_{277}\right)$ are Hecke eigenvalues,

$$
T(p) f_{277}=a_{p}\left(f_{277}\right) f_{277}
$$

Computation of $a_{p}\left(f_{277}\right)$

- The values $a_{p}\left(f_{277}\right)$ are Hecke eigenvalues,

$$
T(p) f_{277}=a_{p}\left(f_{277}\right) f_{277}
$$

- Computing $T(p) f_{277}$ requires Fourier coefficients of f_{277} depending on matrices

$$
T=\left(\begin{array}{cc}
n & r / 2 \\
r / 2 & N m
\end{array}\right)
$$

with large entries.

Computation of $a_{p}\left(f_{277}\right)$

- The values $a_{p}\left(f_{277}\right)$ are Hecke eigenvalues,

$$
T(p) f_{277}=a_{p}\left(f_{277}\right) f_{277}
$$

- Computing $T(p) f_{277}$ requires Fourier coefficients of f_{277} depending on matrices T with large entries.
- $f_{277}=Q\left(G_{1}, \ldots, G_{2}\right)$

Computation of $a_{p}\left(f_{277}\right)$

- The values $a_{p}\left(f_{277}\right)$ are Hecke eigenvalues,

$$
T(p) f_{277}=a_{p}\left(f_{277}\right) f_{277}
$$

- Computing $T(p) f_{277}$ requires Fourier coefficients of f_{277} depending on matrices T with large entries.
- $f_{277}=Q\left(G_{1}, \ldots, G_{2}\right)$
- To compute the previous expression for f_{277}, we need lots of Fourier coefficients of each individual Gritsenko lift G_{i}.

Computation of $a_{p}\left(f_{277}\right)$

- The values $a_{p}\left(f_{277}\right)$ are Hecke eigenvalues,

$$
T(p) f_{277}=a_{p}\left(f_{277}\right) f_{277}
$$

- Computing $T(p) f_{277}$ requires Fourier coefficients of f_{277} depending on matrices T with large entries.
- $f_{277}=Q\left(G_{1}, \ldots, G_{2}\right)$
- To compute the previous expression for f_{277}, we need lots of Fourier coefficients of each individual Gritsenko lift G_{i}.
- Improvement: specialization.

Computation of Hecke eigenvalues

- Let $s \in \operatorname{Mat}_{2 \times 2}^{\text {sym }}(\mathbb{Z})$ be positive definite, then

$$
\begin{aligned}
\phi_{s}: \mathcal{H}_{1} & \rightarrow \mathcal{H}_{2} \\
\tau & \mapsto s \tau
\end{aligned}
$$

yields a map $\phi_{s}^{*}: S_{2}(K(N)) \rightarrow S_{2}\left(\Gamma_{0}(\operatorname{det}(s) N)\right)$.

Computation of Hecke eigenvalues

- Let $s \in \operatorname{Mat}_{2 \times 2}^{\text {sym }}(\mathbb{Z})$ be positive definite, then

$$
\begin{aligned}
\phi_{s}: \mathcal{H}_{1} & \rightarrow \mathcal{H}_{2} \\
\tau & \mapsto s \tau
\end{aligned}
$$

yields a $\operatorname{map} \phi_{s}^{*}: S_{2}(K(N)) \rightarrow S_{2}\left(\Gamma_{0}(\operatorname{det}(s) N)\right)$.

- The form f_{277} is expressed as a rational function of Gritsenko lifts,

$$
f_{277}=Q\left(G_{1}, \ldots, G_{10}\right)
$$

Computation of Hecke eigenvalues

- Let $s \in \operatorname{Mat}_{2 \times 2}^{\text {sym }}(\mathbb{Z})$ be positive definite, then

$$
\begin{aligned}
\phi_{s}: \mathcal{H}_{1} & \rightarrow \mathcal{H}_{2} \\
\tau & \mapsto s \tau
\end{aligned}
$$

yields a $\operatorname{map} \phi_{s}^{*}: S_{2}(K(N)) \rightarrow S_{2}\left(\Gamma_{0}(\operatorname{det}(s) N)\right)$.

- The form f_{277} is expressed as a rational function of Gritsenko lifts,

$$
f_{277}=Q\left(G_{1}, \ldots, G_{10}\right)
$$

- The specialization morphism ϕ_{s}^{*} is a ring homomorphism, so we can specialize each lift individually

$$
\phi_{s}^{*} f_{277}=Q\left(\phi_{s}^{*} G_{1}, \ldots, \phi_{s}^{*} G_{10}\right)
$$

This (one-variable) series is then compared with

$$
\phi_{s}^{*}\left(T(p) f_{277}\right)=Q\left(\phi_{s}^{*}\left(T(p) G_{1}\right), \ldots, \phi_{s}^{*}\left(T(p) G_{10}\right)\right)
$$

Computation of Hecke eigenvalues

- The remaining task is to compute $G_{i}=\operatorname{Grit}\left(\bar{\Xi}_{i}\right)$.
- Each $\bar{\Xi}_{i}$ is a theta block, computed by multiplying two-variable Laurent series.

$$
\Xi_{i} \rightsquigarrow \quad \operatorname{Grit}\left(\bar{\Xi}_{i}\right) \quad \rightsquigarrow \quad\left\{\begin{array}{l}
\phi_{s}^{*}\left(\operatorname{Grit}\left(\bar{\Xi}_{i}\right)\right) \\
\phi_{s}^{*}\left(T(p) \operatorname{Grit}\left(\bar{\Xi}_{i}\right)\right) .
\end{array}\right.
$$

Computation of Hecke eigenvalues

- The remaining task is to compute $G_{i}=\operatorname{Grit}\left(\bar{\Xi}_{i}\right)$.
- Each $\bar{\Xi}_{i}$ is a theta block, computed by multiplying two-variable Laurent series.

$$
\Xi_{i} \rightsquigarrow \quad \operatorname{Grit}\left(\bar{\Xi}_{i}\right) \quad \rightsquigarrow \quad\left\{\begin{array}{l}
\phi_{s}^{*}\left(\operatorname{Grit}\left(\bar{\Xi}_{i}\right)\right) \\
\phi_{s}^{*}\left(T(p) \operatorname{Grit}\left(\bar{\Xi}_{i}\right)\right) .
\end{array}\right.
$$

- Implementation done in Sagemath, available at https://github.com/3nr1c/siegel-paramodular-forms/.

Computation of Hecke eigenvalues

- The remaining task is to compute $G_{i}=\operatorname{Grit}\left(\bar{\Xi}_{i}\right)$.
- Each $\bar{\Xi}_{i}$ is a theta block, computed by multiplying two-variable Laurent series.

$$
\Xi_{i} \rightsquigarrow \quad \operatorname{Grit}\left(\bar{\Xi}_{i}\right) \quad \rightsquigarrow \quad\left\{\begin{array}{l}
\phi_{s}^{*}\left(\operatorname{Grit}\left(\bar{\Xi}_{i}\right)\right) \\
\phi_{s}^{*}\left(T(p) \operatorname{Grit}\left(\bar{\Xi}_{i}\right)\right) .
\end{array}\right.
$$

- Implementation done in Sagemath, available at https://github.com/3nr1c/siegel-paramodular-forms/.
- With the data from the LMFDB, we are able to compute $a_{p}\left(f_{277}\right)$ up to $p \leq 23$.

Computation of Hecke eigenvalues

- The remaining task is to compute $G_{i}=\operatorname{Grit}\left(\bar{\Xi}_{i}\right)$.
- Each $\bar{\Xi}_{i}$ is a theta block, computed by multiplying two-variable Laurent series.

$$
\Xi_{i} \rightsquigarrow \quad \operatorname{Grit}\left(\Xi_{i}\right) \quad \rightsquigarrow \quad\left\{\begin{array}{l}
\phi_{s}^{*}\left(\operatorname{Grit}\left(\bar{\Xi}_{i}\right)\right) \\
\phi_{s}^{*}\left(T(p) \operatorname{Grit}\left(\bar{\Xi}_{i}\right)\right) .
\end{array}\right.
$$

- Implementation done in Sagemath, available at https://github.com/3nr1c/siegel-paramodular-forms/.
- With the data from the LMFDB, we are able to compute $a_{p}\left(f_{277}\right)$ up to $p \leq 23$.
- With the specialization method, we get $a_{p}\left(f_{277}\right)$ for $p=2,3,5$.
- Further a_{p} can be computed by increasing precision / computational resources.

Comparison of $a_{p}{ }^{\prime} s$

```
enric@MacBookPro siegel-paramodular-forms % sage specialization.sage
N = 277
det(2T0) = 3, a(T0;f) = -3
-3*q^3 + 0(q^4)
p = 2
6*q^3 + 0(q^4)
a_p(f) = -2
a_p(C) = -2
p = 3
3*q^3 + O(q^4)
a_p(f) = -1
a_p(C) = -1
p = 5
3*q^3 + O(q^4)
a_p(f) = -1
a_p(C) = -1
p = 7
-3*q^3 + 0(q^4)
a_p(f) = 1
a_p(C) = 1
```


Abelian surfaces, Siegel modular forms, and the Paramodularity Conjecture

Enric Florit Zacarías

Tutor: Xavier Guitart

Master in Advanced Mathematics - Universitat de Barcelona
July 15, 2021

