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State the Modularity Theorem through L-functions
State Ribet's theorem for GL,-type abelian varieties

>
>
» Study the construction of Siegel paramodular forms
» State the Paramodularity Conjecture

>

Explore the first known case of the Paramodular conjecture
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Elliptic curves
» Elliptic curve E over Q:
Y2=X3+AX +B

with A,B € Q, A = 4A3 +27B% # 0.
» Genus 1 projective algebraic curve with a point at infinity
co=[0:1:0].
» The curve has a commutative group law with oo the identity.
> We can assume A, B, A € Z.
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Point counting and L-functions

» For p prime not dividing A, E/]Fp is an elliptic curve.
On average, #E(FF,) should be about p + 1.
» The number of points satisfies the Hasse bound

lp+1—#E(F,)| <2/p.
» Let a,:=p+1—#E(Fp). For p| A, define a, € {—1,0,1}.

» The L-function of E is the function

L(E,s) = H(l —app )t H(l —app S 4 pl )L

plA piA

v

which is holomorphic for Re(s) > 3.
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Modular forms

> SLy(Z) = {(i 3) | ad — bc = 1} C Matoyo(Z).

» The group SL»(Z) acts on the upper-half plane
H={zeC|Imz >0} by

a b z_az+b
c d cz+d’

> We consider the group of matrices [o(N) = { (I\7c 2) }

» A holomorphic f : H — C is a modular form of level N if
f(y-z) = (cz+ d)?*f(2)

for all v € To(N), and f(z) satisfies some boundedness
condition.
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Cusp forms

> Since T — (é D € To(N), f(Tz) = f(z + 1) = f(2). Hence

modular forms have a Fourier expansion
_ 2mwinT
f(r) = ape :
n>0

» A modular form is a cusp form if ag = 0.
» Modular forms: Mp([o(N)).
» Cusp forms: Sx(I'o(N)) (both are C-vector spaces).
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Hecke operators and L-functions

» Given p prime, the Hecke operator

Tp : Ma(To(N)) — Ma(To(N)) preserves the space of cusp
forms.

> If f is a simultaneous eigenvector for all the T, and a;(f) = 1,
Tp(f) = ap(f) f.

» The L-function of f is given by

L(f,s) = H(l —ap(f)p5)t H(l ~ay(F)ps + pt) 1

pIN piN

an(f
-y,

n>1
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Modularity of Elliptic curves

Modularity Theorem

Let E/, be an elliptic curve of conductor N. Then there is an
eigenform f € Sy(Mo(N)) such that

L(f,s) = L(E,s).

» L(E,s) is a meromorphic function on all of C
» Birch and Swinnerton-Dyer conjecture
> Heegner points
> Fermat's Last Theorem
[N
> s E:y? =x(x—a")(x+ b)
> E -~ fe € 5(Mo(2)) = {0} (1)
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Abelian varieties

> An abelian variety A q is a projective variety such that A(Q)
has a group structure induced by algebraic maps
m:AxA—AIi A=A

» The complex points A(C) are isomorphic to a complex torus,
A(C) = C9/A

for d = dim A and some discrete subgroup A C C¢ of rank 2d.

» Given a Riemann surface C, its Jacobian is the quotient
Jac(C) = QY(C)Y/Hi(C, Z),

where Q1(C) is the C-vector space of holomorphic
differentials, and Hi(C,Z) is the integral homology on C.
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L-functions

» For each prime p, the pth Euler factor of A q is a polynomial
L,(A, T)el+ TC[T].

of degree 2dim A.

» For an elliptic curve E and a good prime pt A,
L,(E,T)=1—a,T +pT=

» We use the Euler factors to define L-function of A,

L(A,s) =[] Le(A p) "

It converges in a right-hand plane {s € C | Re(s) > 3}.
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Xo(N) and Jo(N)

» The quotient Mo(N) \ H can be compactified to form a
compact Riemann surface,

Xo(N) = To(N) \ 7.

» Xo(N) has an algebraic model over Q, the modular curve of
level N.

» The Jacobian of Xo(N) is denoted by Jo(/N). We have an
isomorphism

QM (Xo(N)) 22 Sy(Fo(N)),

which gives us the expression

Jo(N) = Sy(To(N))"/Hi(Xo(N), Z).
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Eichler-Shimura theorem

Theorem
» Let f € S3(lo(N)) be a normalized eigenform with Fourier
expansion Y . anq".
» Let Kr = Q({an}) be the number field generated by its
coefficients.
» Then there exists an abelian variety A¢ of dimension [Kr : Q],

such that
L(Ars)= ] Luf

(o Kf;)(c

» In particular, if f has integer Fourier coefficients then Af is an
elliptic curve.
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Let Tz be the Z-algebra generated by the operators T,
acting on Sa(lo(N)).

Given an eigenform f € Sy(I'o(N)), we have a homomorphism
)\f . TZ —C

such that T,f = A¢(Tp)f.
Tz acts on Jo(N) = S5(Fo(N))Y/Hy by duality.
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| 2

| 2

Let Tz be the Z-algebra generated by the operators T,
acting on Sa(lo(N)).

Given an eigenform f € Sy(I'o(N)), we have a homomorphism
)\f . TZ —C

such that T,f = A¢(Tp)f.
Tz acts on Jo(N) = S5(Fo(N))Y/Hy by duality.
Let /r = ker Af. Then the quotient

Ar = Jo(N)/Ir Jo(N)

is an abelian variety.

Hard part: prove equality of L-functions.
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Modularity of GL,-type abelian varieties

» Given an eigenform f, the endomorphism ring of the variety
Ar satisfies
End(Af) ® Q = Ks.
» An abelian variety A g is said to be of GLo-type if
End(A) ® Q contains a number field of degree dim A.

Theorem (Ribet)

Let A/ be an abelian variety of GL>-type of conductor N with
endomorphism algebra K. There exists a classical modular
eigenform f € Sy(I'1(N)) such that

LA s)= ] L9

o:K—C
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Siegel upper half space, symplectic action

Let's build a higher-dimensional analogy of modular forms:

» First, the space: the Siegel upper-half space is
Ho = {Z € Mat;[5(C) | ImZ > 0}.
(indeed H1 = H).

» The symplectic group is

Spa(R) = {M € GLa(R) | M7 (—0/2 ’5) M— (_0/2

» Sp,(R) acts on H> as

Z <é‘ g) .Z=(AZ+B)(CZ+ D)™
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Siegel Paramodular Forms

Let N € Z>1. Our substitute for ['o(N) is the level N paramodular
group

*  Nx % *
* * *  x/N
k=1 o N asp

Nx Nx  Nx *

where x € Z.
A Siegel paramodular form of level N and weight 2 is a
holomorphic f : Hy — C satisfying

> f(MZ) = det(CZ + D)2 §(Z) for all M — (? g) € K(N).

» f(Z) satisfies a boundedness condition.
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Koecher principle

Theorem
A paramodular form f € My(K(N)) has a Fourier expansion of the

form
£ <’T Z> _ Z 3( T; f)e27ri(m'+rz+wa)’

zZ w
T>0
where T runs over positive semidefinite matrices of the form

([ n r/2
T = (r/2 Nm>’ nr,meZ.

» There is a notion of cusp forms, Sy(K(N)).
» They satisfy a(T;f) =0 for det T = 0.
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Hecke operators and L-functions

» One defines Hecke operators

T(p) : Ma(K(N)) — Ma(K(N)),
T1(p?) : Ma(K(N)) = Ma(K(N))

that preserve cusp forms.

» If f is a simultaneous eigenform for all T(p), T1(p?), its
eigenvalues let us define spinor Euler factors

Qp(f, T)e 1+ TC[T], degQ,=14

» We package the Euler factors into the L-function of f,

L(f,5) = [ Qo(1.p7)
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Gritsenko lift

» Jacobi forms: holomorphic functions
p:HxC—-C

with symmetries with respect to o, C Sps(Z).
> Notation: Jin, cusp forms J,.'v.

Theorem (Gritsenko)
There is a lift
Grit : S35 — S2(K(N)).

The paramodular form Grit(¢) is given explicitly in terms of the
Fourier expansion of ¢.
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Paramodularity Conjecture

Let A/g be an abelian surface of conductor N with End(A) = Z.
There exists a Siegel paramodular eigenform f4 € Sp(K(N)) which
is not a Gritsenko lift such that

L(A,s) = L(fa,s).

Conversely, given a nonlift Siegel paramodular eigenform
f € So(K(N)) of squarefree level N, there is an abelian surface
Ag g of conductor N with End(A) = Z and such that

L(f,s) = L(Ar,s).



The Paramodularity Conjecture
The case of level N = 277



Example: the nonlift of level 277

Theorem (Poor-Yuen)

The subspace of Gritsenko lifts of Sy(K(277)) has dimension 10,
whereas dim S>(K(277)) = 11. The form fo77 is a Hecke eigenform
with rational eigenvalues which is not a Gritsenko lift, given as a
degree-2 rational function of Gritsenko lifts

Gl, ey GlO S 52(K(277)).



Example: the nonlift of level 277

forr = (—14G2 — 206G, + 11Gy Gy 4 6G2 — 30G; Gyg + 15Go Gy
+15G10Gy — 30G10Gy — 30G19Gs + 5G4 G5 + 6G4 Gg + 176, G,
—3G4Gg — 5G4Gy — 5G5Gg + 20G5 Gy — 5G5Gg — 10G5 Gy — 3GZ
+13GsGy + 3G Gg — 10Gs Gy — 22G2 + G;Gg + 15G; Gy + 6G2
—4GgGy — 2GZ +20G1 Gy — 28G3G, + 23G, Gy + 7GsGy
—31G;G; + 15G5G, + 45G; G3 — 106, Gs — 26, G4 — 13G; Gg
—7G1Gg +39G1G; — 166Gy Gy — 34G2 + 8G3Gy + 20G3Gs
+22G3Gs + 10G3Gg + 21G3 Gy — 56G3G7 — 3G} /
(—Ga+ Go+2G7 + Gg — Gy +2G3 — 3G, — Gy)



Paramodularity for N = 277

Theorem (Brumer-Pacetti-Poor-Tornaria-Voight-Yuen)
Let C be the curve over Q defined by

C: Yy’ +(3+x+x+1)y=—x>—x.

Let A be the Jacobian of C, which has End(A) = Z and N = 277.
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Paramodularity for N = 277

Theorem (Brumer-Pacetti-Poor-Tornaria-Voight-Yuen)
Let C be the curve over Q defined by

C: Yy’ +(3+x+x+1)y=—x>—x.

Let A be the Jacobian of C, which has End(A) = Z and N = 277.
Let f77 € S2(K(277)) be the nonlift Siegel paramodular form of
level 277. For all primes p, we have

Lp(A, T) = Qp(far7, T).

In particular L(A,s) = L(f277,s) and A is paramodular.
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» Generalized Faltings-Serre method to check
Lp(A, T) = Qp(far7, T)

for all primes p.

» The method reduces the check to finitely many primes.



Strategy of proof

» Generalized Faltings-Serre method to check

Lp(A; T) = Qp(far7, T)

for all primes p.
» The method reduces the check to finitely many primes.
> Write

LP(AaT) :l—ap(A)T+—|—p2T4
Qp(for7, T) =1—ap(forr) T+ -+ p°T*

It is enough to compute a,(A) and ap(f277) for all primes

p € {2,3,5,...,41,43}.



Computation of a,(A): point counting
» We have A = Jac(C), with

C:y+(C+x2+x+1)y=—x*—x

> If C'/]Fp is the reduction of C modulo p, then

ap(A) = p+1— #C(Fp).



Computation of a,(A): point counting
» We have A = Jac(C), with

C:y+(C+x2+x+1)y=—x*—x

> If (:‘/]Fp is the reduction of C modulo p, then

ap(A) = p+1— #C(Fp).

» This can be done e.g. with Sage:

SageMath version 9.2, Release Date: 2020-10-24
Using

Python 3.8.5. Type "help()" for help.

sage:
sage:
sage:

[5]

sage:

[5]

sage:

[71

sage:

R.

C

C.

<x> = QQ[]
= HyperellipticCurve(—x"2 - x, x"3 + x*2 + x + 1)
change_ring(GF(2)).count_points()

.change_ring(GF(3)).count_points()

.change_ring(GF(5)).count_points()
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Computation of a,(fr7)

» The values ap(fo77) are Hecke eigenvalues,

T(p)far7 = ap(for7)forr-

» Computing T(p)fa77 requires Fourier coefficients of f77
depending on matrices T with large entries.

» frr7 = Q(Gy,. .., G)

> To compute the previous expression for fo77, we need lots of
Fourier coefficients of each individual Gritsenko lift G;.

» Improvement: specialization.
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Computation of Hecke eigenvalues
> Let s € Mat3)5(Z) be positive definite, then

¢s: H1— Ho

T+ ST

yields a map ¢} : So(K(N)) — So(lo(det(s)N)).
> The form fa77 is expressed as a rational function of Gritsenko
lifts,
fr77 = Q(Gi, . .., Gio).

» The specialization morphism ¢ is a ring homomorphism, so
we can specialize each lift individually

¢sfrrr = Q(¢5 G, .. ., ¢4 G1o).

This (one-variable) series is then compared with

95(T(p)farr) = Q(d5(T(P)G1), - - d5(T(p) G10))-
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» The remaining task is to compute G; = Grit(=Z;).

» Each =; is a theta block, computed by multiplying
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Computation of Hecke eigenvalues

» The remaining task is to compute G; = Grit(=Z;).

» Each =; is a theta block, computed by multiplying
two-variable Laurent series.

= o~ Ght(S) {‘b:(G”t(E"))
¢5(T(p) Grit(=;))-

» Implementation done in Sagemath, available at
https://github.com/3nric/siegel-paramodular-forms/.

> With the data from the LMFDB, we are able to compute
ap(fr7) up to p < 23.
» With the specialization method, we get a,(f277) for p = 2,3, 5.

» Further a, can be computed by increasing precision /
computational resources.


https://github.com/3nr1c/siegel-paramodular-forms/

Comparison of a,'s

enric@MacBookPro siegel-paramodular-forms % sage specialization.sage
N = 277

det(2T0) = 3, a(Te;f) = -3

—-3%g”3 + 0(gh4)

p =2

6xq”3 + 0(qh4)
a_p(f) = -2
a_p(C) = -2

p =3

3%q"3 + 0(qh4)
a_p(f) = -1
a_p(C) = -1
p=5

3%g”3 + 0(gh4)
a_p(f) = -1
a_p(C) = -1
p=7

-3%xq”"3 + 0(qh4)
a_p(f) =1
a_p(C) =1
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