Isogeny-based cryptography

Enric Florit Zacarías

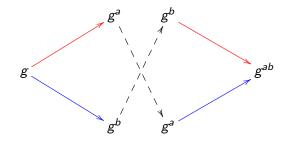
STNB 2020

5 de febrer de 2020

Diffie-Hellman (1976)

Let G be a cyclic group generated by g and with order N.

- Alice picks $a \in \mathbb{Z}/N\mathbb{Z}$ and sends $A = g^a$.
- **Bob** picks $b \in \mathbb{Z}/N\mathbb{Z}$ and sends $B = g^b$.
- Shared secret: $A^b = B^a = g^{ab}$.



Discrete logarithm problem (DLP)

Given a cyclic group $G = \langle g \rangle$ and an element $A \in G$, find $a \in \mathbb{Z}/N\mathbb{Z}$ such that $A = g^a$.

Algorithm	Complexity
Exhaustive search	<i>O</i> (<i>N</i>)
Baby step – giant step	Time $O(\sqrt{N})$, memory $O(\sqrt{N})$
Pohlig-Hellman	$O(\sum_{i=1}^{r} e_i(\log N + \sqrt{p_i}))$
Index calculus in $\mathbb{F}_{p^n}^{\times}$	$L_{p^n}[1/2,\sqrt{2}]$
NFS-DLP in $\mathbb{F}_{p^n}^{\times'}$	$L_{p^n}[1/3,c]$

Table: Algorithms solving DLP in a group of order $N = \prod_{i=1}^{r} p_i^{e_i}$.

• Shor, 1994: polynomial-time quantum algorithms to solve DLP and factorization.

A postquantum cryptosystem must meet two requirements:

- It must be efficient to use with existing hardware.
- It must be resistent both to classical and quantum adversaries. Isogeny-based cryptography is an attempt to develop postquantum cryptography.

Theorem

Let *E* be an elliptic curve over *K*, and let *G* be a finite subgroup of *E*. Then, there exist an elliptic curve *E'* and a separable isogeny $\phi: E \to E'$, both unique up to isomorphism, such that ker $\phi = G$.

- Corollary: isogenies decompose into prime-degree factors.
- Vélu formulas allow us to compute φ and E/G in O(|G|) time and memory.

Problem

Given E, E' isogenous curves, find an isogeny $E \rightarrow E'$.

- Exponential complexities, $O(\sqrt{p}\log^2 p)$. See works by Kohel, Galbraith, Delfs, etc. But easier if...
- The degree is known.
- The kernel structure is known (e.g., cyclic kernel).
- The curve is **ordinary** (quantum subexponential time).

Theorem

Let *E* be a curve over a finite field \mathbb{F}_q , $q = p^r$. TFAE:

- E is supersingular.
- $E[p] = \{O\}.$
- [p] is purely inseparable.
- $\#E(\mathbb{F}_q) = q+1-t$, with $t \equiv 0 \mod p$.
- $End(E) \otimes_{\mathbb{Z}} \mathbb{Q}$ is a quaternion algebra.

The *j* invariant of a supersingular curve lies in \mathbb{F}_{p^2} . Given a prime *p*, there are about p/12 supersingular elliptic curve isomorphism classes defined over $\overline{\mathbb{F}}_p$.

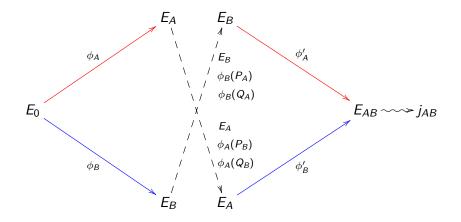
- Choose a prime of the form $p = \ell_A^{e_A} \ell_B^{e_B} f \pm 1$, $\ell_A^{e_A} \approx \ell_B^{e_B}$.
- Initial curve E_0 having $\#E_0(\mathbb{F}_{p^2}) = (\ell_A^{e_A} \ell_B^{e_B} f)^2$ points ($\implies E_0$ supersingular).

Lemma

Let *E* be an elliptic curve over \mathbb{F}_q . Assume π_E is in \mathbb{Z} , and let $n \ge 1$ such that $n^2 \mid \#E(\mathbb{F}_q)$. Then $E[n] \subset E(\mathbb{F}_q)$.

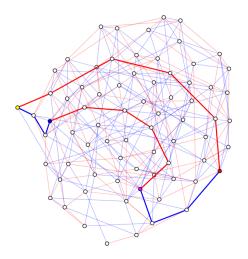
As a consequence, $E_0[\ell_A^{e_A}]$, $E_0[\ell_B^{e_B}] \subset E_0(\mathbb{F}_{p^2})$, and all our isogenies will be defined over \mathbb{F}_{p^2} . Fix bases $E_0[\ell_A^{e_A}] = \{P_A, Q_A\}$, $E_0[\ell_B^{e_B}] = \{P_B, Q_B\}$.

SIDH key exchange (Jao and De Feo, 2011)



SIDH visualization

$$p = 2^5 3^3 - 1 = 863$$



Computation of ℓ^{e} -isogenies

We want to compute $\phi: E \to E/\langle R \rangle$ with $\operatorname{ord}(E) = \ell^e$. Let $E_0 = E$, $R_0 = R$, and for $0 \le i < e$, let $E_{i+1} = E_i/\langle \ell^{e-i-1}R_i \rangle, \quad \phi_i \colon E_i \to E_{i+1}, \quad R_{i+1} = \phi_i(R_i).$ Then $E/\langle R \rangle = E_e$ and $\phi = \phi_{e-1} \circ \cdots \circ \phi_0$. **Data:** E, P, ℓ, e **Result:** $\phi: E \to E/\langle P \rangle$ $P_0 \leftarrow P$ for 1 < i < e - 1 do $| P_i \leftarrow [\ell] P_{i-1}$ end $\phi \leftarrow id_F$ for 0 < i < e - 1 do $\phi_i: E_i \to E_i / \langle \phi(P_{e-1-i}) \rangle$ $\phi \leftarrow \phi_i \circ \phi$ end

Problem (Supersingular Isogeny problem (CSSI))

Let $\phi_A: E_0 \to E_A$ be an isogeny with kernel $\langle m_A P_A + n_A Q_A \rangle$, where m_A, n_A are chosen randomly in $\mathbb{Z}/\ell_A^{e_A}\mathbb{Z}$ and not both divisible by ℓ_A . Given the curves E_0 , E_A and the values $\phi_A(P_B)$ and $\phi_A(Q_B)$, find a generator R_A of $\langle m_A P_A + n_A Q_A \rangle$.

Analog to DLP in the Diffie-Hellman setting.

- The best strategy to break SIDH is almost brute-force, at $O(\sqrt[4]{p})$ and $O(\sqrt[6]{p})$ (exponential in log $p \sim e_A, e_B$).
- It looks like the auxiliary points (φ_A(P_B) and so on) are revealing too much information, but so far nobody* has been able to exploit them.

Problem

Given isogenous curves E, $E/\langle R \rangle$, compute an isogeny $\phi \colon E \to E/\langle R \rangle$ of degree ℓ^e , and compute R.

- Compute all isogenies $E \to E'$ of degree $\ell^{e/2}$, store the E' in a dictionary.
- ② Compute all isogenies $E/\langle R \rangle \rightarrow E'$ of degree $\ell^{e/2}$, until some E' is in the dictionary.
- Ompose both isogenies*.

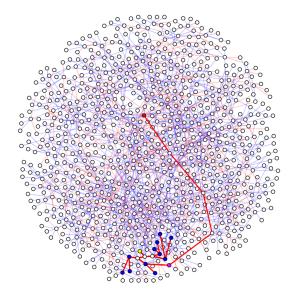
Lemma

Let $\psi \colon E \to E/\langle R \rangle$ be a cyclic ℓ^e -isogeny, with $R \in E[\ell^e]$. Then, its dual isogeny $\hat{\psi}$ is also cyclic. More precisely, if $E[\ell^e] = \langle P, Q \rangle$ and $R = P + \alpha Q$, then ker $\hat{\psi} = \langle \psi(Q) \rangle$.

Remark

The composition of cyclic isogenies of coprime degree is cyclic.

The *claw* algorithm visualized



- Computation of cyclic isogenies $E_0 \rightarrow E_A$, given the degree N.
- Computation of isogenies $E_0 \rightarrow E_A$, given the structure of the kernel.
- Given an isogeny $\phi = \phi_{e-1} \circ \cdots \circ \phi_0$, compute its kernel.