
The Elliptic Curve Discrete Logarithm Problem

Enric Florit Zacaŕıas

These notes are a small survey made for self-study on the Discrete Logarithm Problem. I have done a review
of general methods first, and then stepped into ECDLP. Some basic knowledge from group theory, modular
arithmetic and elliptic curves should be sufficient to understand the content.

1 Statement

Let G be a cyclic group and g ∈ G a generator. Given an element a ∈ G, to solve the discrete logarithm problem
is to find n ∈ Z such that

a = gn.

This definition is analogous to the logarithm one can perform in fields such as R, C and Qp.
We will only deal with (cyclic subgroups of) finite groups, and n can be seen modulo the order of the group.

In this text we shall note n = Lg(a), or n = L(a) whenever we fix a generator.

2 Index calculus in F×p
Proposition 2.1. The group F×p ∼= (Z/pZ)

×
is cyclic (of order p− 1) for every prime p. If g is a generator of

F×p we call it a primitive root modulo p.

This is a motivation for studying the discrete logarithm problem, and in fact the DLP for general groups
(other than Z/NZ) is sometimes [1] refered to as the generalized DLP. Therefore the most basic setting for the
DLP are the integers modulo p. We want to find n such that

a ≡ gn mod p.

1. Find a primitive root g modulo p.

2. Pick a factor base B ⊂ Z/pZ (usually the factors are primes).

3. Find relations of the form
gki ≡ ±

∏
b∈B

brb,i mod p, 0 ≤ i . |B|.

4. Translate these to relations of the form

ki ≡ L(±1) +
∑
b∈B

rb,iL(b) mod p− 1.

Notice that L(1) ≡ 1 and L(−1) ≡ p−1
2 . This is a linear system in the unknowns L(b), b ∈ B. Solve it

and store the results.

5. Find j such that gja can be factored as product of elements in B,

gja ≡
∏
b∈B

bsb mod p.

6. We find n ≡ L(a) ≡
∑
b∈B sbL(b)− j mod p− 1.

This method works because we are using a set of representatives {0, 1, . . . , p− 1} of the group, which can be
factored if we see them in Z. This shows the importance of the chosen representation of our group. However,
we still need efficient ways to perform steps (3) and (5).

Proposition 2.1 is also true in all this groups: (Z/4Z)×, (Z/pkZ)×, (Z/2pkZ)×, with p an odd prime. But
we have stated the method only for Fp because in the other settings, one is working in a ring with zero divisors
instead of a field. We actually have a similar problem working modulo p−1, which can be solved via the Chinese
Remainder Theorem (see [4] Sutherland’s remark 11.4).

Another result will be important when we deal with elliptic curves:

1

Proposition 2.2. Given a prime p and an integer m ≥ 1, the group F×pm is cyclic.

More sofisticated versions of index calculus exist for all finite fields.

3 Generic algorithms for the DLP

3.1 Baby step, Giant step

Assume now that G is finite of order N := |G|.

1. Fix m ≥
√
N and compute gm.

2. Baby steps: Compute and store gi for 0 ≤ i < m.

3. Giant steps: Compute ag−jm for j = 0, 1, . . . ,m− 1 until it matches one of the gi.

4. If gi = ag−jm, then n ≡ i+ jm mod N .

As long as m ≥
√
N , we will find a match. Indeed, every expression i+ jm is and euclidian division, which

will sweep every value less than or equal to m2 ≥ N .
This algorithm has the downside of requiring the storage of O(

√
N) values.

3.2 Pollard’s ρ

Let G be finite, f : G→ G a certain function. If we pick P0 ∈ G and define

Pi+1 := f(Pi), i ≥ 0,

then by the pigeonhole principle there will be some i0 6= j0 such that Pi0 = Pj0 . We try to exploit this fact to
solve computational problems by choosing appropriate functions f .

3.2.1 Integer factoring

The algorithm’s description for integer factoring is easier to understand than the setting for DLP, but the
underlying principle is the same.

Let N be an integer we want to factor. Pick an initial x0 ∈ 0, 1, . . . , N − 1, usually 2, and let f(x) := x1 + 1
mod N .

Then for some i0 6= j0, the numbers xi0 and xj0 will be congruent modulo a prime p dividing N , and
hopefully not modulo N . Then d := gcd(xi0 − xj0 , N) is divisible by p, and a factor of N .

Using Floyd’s Tortoise and Hare, we may write the following algorithm:

x := 2 , y := 2 , d := 1
whi le d=1:

x := f (x)
y := f (f (y))
d := gcd (| x−y | , N)

re turn d

This method has the reputation for factoring the eighth Fermat number F8 = 228

+ 1 in 1981.

3.2.2 Logarithms

We follow the exposition in Washington’s book [5]. Start by dividing G into k disjoint subsets S1, S2, . . . , Sk of
approximately the same size (take k ' 20). Choose 2k random integers ri, si mod N , i = 1, . . . , k. Let

mi := griasi ,

and define f(x) := x ·mi if x ∈ Si.
As the initial point, take P0 := gr0as0 for some integers r0, s0 mod N . We need to keep track of the

expression of Pj+1 = f(Pj) as product of powers of g and a. I.e., if Pj = gujavj , then

Pj+1 = f(Pj) = Pjmi = guj+riavj+si .

Once a loop is reached, we will have

gαaβ = gAaB =⇒ aβ−B = gA−α =⇒ an(β−B) = aA−α

2

and therefore n(β −B) ≡ A− α mod N . If we let d := gcd(β −B,N), then

n ≡ A− α
β −B

mod
N

d
,

and we only have to try a few possible values of n.

3.3 Pollard’s λ

Pollard’s λ algorithm is essentially a parallelized version of the rho algorithm. We pick r starting points

P
(1)
0 , . . . , P

(r)
0 , and perform random walks (in parallel) as in Pollard’s ρ. Points satisfying some condition (called

distinguished points) are reported to a central process. When two equal points with different expressions arrive
to the central unit, the relation found can be used to find n, just as in the final stage of the ρ algorithm.

3.4 Pollard’s Kangaroo Algorithm

This algorithm can be used to look for the order n in a (contiguous) subset {α, . . . , β} ⊂ Z/NZ. It is said that
the ρ algorithm is faster if we are looking at the whole {0, 1, . . . , N − 1} set.

Choose a set of integers S ⊂ Z (unrelated to α, β) and a function f : G → S. Fix L, and compute the
following finite sequence:

x0 = gβ ; xi+1 = xig
f(xi) for i = 0, 1, . . . , N − 1.

If we say d =
∑N−1
i=0 f(xi), then xN = x0g

d = gβ+d.
Define two more sequences:

y0 = a; yi+1 = yig
f(yi) for i = 0, 1, . . . , N − 1,

dk =

k−1∑
i=0

f(yi).

Note that yi = y0g
di = agdi .

We will stop computing terms of {yi}i and {di}i whenever:

(a) yj = xN for some j, in which case gβ+d = agdj =⇒ n ≡ β + d− dj mod N ; or

(b) di > β − α + d, in which case the algorithm fails to find n. We may try again changing S, {α, . . . , β}, or
the function f .

3.5 Pohlig-Hellman

Assume G = 〈g〉 is cyclic of order N , and that we know the factorization of N1,

N =
∏
i

qeii .

The idea is to find n mod qeii for each i, and then combine the information by means of the Chinese
Remainder Theorem.

Fix qe||N (i.e., qe|N but qe+1 6 |N). Write n in base q, with 0 ≤ ni < q:

n = n0 + n1q + n2q
2 + · · · ,

we will find ni successively. The following steps are performed (the algorithm can be written in a more compact
way, but this exposition made in Washington’s book [5] is clearer to understand):

1. First compute T =
{
gj(

N
q); 0 ≤ j ≤ q − 1

}
.

2. Compute aN/q, which will equal some gn0(N/q) ∈ T .

3. If e = 1, stop. Otherwise continue.

4. Let a1 = ag−n0 .

5. Compute a
N/q2

1 , which will equal some gn1(N/q) ∈ T .

1We may perform the algorithm if we only know a few prime factors of N , and we will get some information, but we will only
know the exact logarithm if we have the full factorization.

3

6. If e = 2, stop. Otherwise continue.

7. Suppose we have computed n0, n1, . . . , nr−1 and a1, . . . , ar−1. Let ar = ar−1g
−nr−1qr−1.

8. Determine nr such that a
N/qr+1

r = gnr(N/q) ∈ T .

9. If r = e− 1, stop. Otherwise go back to step 7.

Sketch of Pohlig-Hellman proof: we have

a = gn =⇒ aN/q = g(N/q)(n0+n1q+n2q
2+...) = gn0(N/q) +N(n1 + n2q + n3q

2 + . . .) = gn0(N/q).

Similarly, ag−n0 = gn−n0 =⇒ (ag−n0)
N/q2

= gn1(N/q); and so on for n2, n3, We stop at r = e − 1, since
N/qe+1 is no longer an integer, and we already know n mod qe.

Pohlig-Hellman works well if all primes dividing N are small. However, if q is a large prime dividing N ,
then it is difficult to list the elements in T , since |T | = q.

Therefore, for cryptographical applications based on the DLP, we should pick N to either

a) only have large prime factors, or

b) be a large prime.

4 The ECDLP

First, let’s fix some notation. K will be a field, K̄ its algebraic closure, Gal(K̄|K) the Galois group of K̄ over K,
and an element σ ∈ Gal(K̄|K) acts on an object (element of the field or point in a curve) x as a superindex, xσ.
charK is the characteristic of K, and for any integer n, charK - n means that either charK = 0 or charK > 0
and it does not divide n.

E/K will be an elliptic curve defined over K (this is, an equation for the curve has its coefficients in K),
and for every field L ⊇ K, E(L) will be the set of L-rational points of E. We will denote the neutral element
of the elliptic curve ∞. If K = Fq (the finite field with q = pr elements, p a prime), then Frobq denotes the
Frobenius automorphism of E that raises each component of a point to its qth power.

4.1 Torsion points

Let E/K be an elliptic curve and let N be a positive integer. We are interested in

E[N] = {P ∈ E(K̄); NP =∞},

wich is a subgroup of E(K̄).

Theorem 4.1. Let E/K be an elliptic curve and let N be a positive integer with charK - N . Then

E[N] ∼= Z/NZ⊕ Z/NZ.

If charK = p > 0 and p|N , let N = prN ′ with p - N ′. Then

E[N] ∼= Z/N ′Z⊕ Z/N ′Z or Z/NZ⊕ Z/N ′Z.

4.2 The Weil pairing

Let E/K be an elliptic curve and charK - N . Then E[N] ∼= Z/NZ⊕Z/NZ. We may fix a Z/NZ-basis {T1, T2}
of E[N]. We can express any point in this group by means of a linear combination of T1, T2. This would allow
us to map pairs of points to a value via the determinant:

det(aT1 + bT2, cT1 + dT2) = ad− bc.

This has the problem of not being galois invariant (i.e., if σ ∈ Gal(K̄|K), its action doesn’t necessarily commute
with det). We are going to define a pairing that does, in addition to having similar properties to the determinant.

Let µN = {x ∈ K̄; xN = 1} be the group of Nth roots of unity in K̄, which is cyclic of order N .

Theorem 4.2. Let E/K be an elliptic curve, charK - N . There exists a pairing

eN : E[N]× E[N] −→ µN ,

called the Weil pairing, satisfying the following properties:

4

a) eN is bilinear, this is, for all S, S1, S2, T, T1, T2 ∈ E[N],

eN (S1 + S2, T) = eN (S1, T)eN (S2, T)

eN (S, T1 + T2) = eN (S, T1)eN (S, T2).

b) eN is alternating: eN (T, T) = 1, and eN (S, T) = eN (T, S)−1 for all S, T ∈ E[N].

c) eN is nondegenerate, meaning that if eN (S, T) = 1 for all T ∈ E[N] then S = ∞ (and the same happens if
we consider the other variable).

d) eN is compatible with the Galois action, for all σ ∈ Gal(K̄|K), S, T ∈ E[N],

eN (S, T)σ = eN (Sσ, Tσ).

Corollary 4.3. Let {T1, T2} be a basis of E[N]. Then eN (T1, T2) is a primitive N th root of unity. Moreover,
if E[N] ⊂ E(K), then µN ⊂ K.

Proof. Let ζ = eN (T1, T2), ζd = 1 for some d. Then properties (1) and (3) of the pairing imply

eN (T1, dT2) = ζd = 1

eN (T2, dT2) = eN (T2, T2)d = 1.

For all S ∈ E[N], S = aT1 + bT2, and so

eN (S, dT2) = eN (T1, dT2)aeN (T2, dT2)b = 1,

wich implies dT2 =∞. Therefore N |d, and so ζ is a primitive Nth root of unity.
Now let σ ∈ Gal(K̄|K). If E[N] ⊂ E(K) then T1, T2 ∈ E(K), and we have

ζ = eN (T1, T2) = eN (Tσ1 , T
σ
2) = eN (T1, T2)σ = ζσ.

Therefore (as charK - N) ζ ∈ K =⇒ µN ⊂ K.

We won’t need this, but a consequence of the last statement is that E[N] 6⊂ E(Q) for n ≥ 3.

4.3 Divisors and construction of the Weil pairing

In the following we will introduce the necessary tool to construct the Weil pairing and to prove its properties.

Definition 4.4. Let E/K be an elliptic curve. For each point P ∈ E(K̄), define a formal symbol [P]. The
group of divisors of E is

Div(E) :=
⊕

P∈E(K̄)

[P]Z = {
∑
i

ai[Pi] finite sum; ai ∈ Z}.

We define the degree and sum of a divisor D =
∑
i ai[Pi] as

deg(D) =
∑
i

ai ∈ Z

sum(D) =
∑
i

aiPi ∈ E(K̄).

Both maps are morphisms. The kernel of sum(·) is the degree-zero-part of the divisor group of E, denoted
Div0(E). The restricted map

sum : Div0(E)→ E(K̄)

is surjective, because sum([P]− [∞]) = P .
If f is a nonzero function in the function field of the curve, f ∈ K̄(E)×, we define

div(f) :=
∑

P∈E(K̄)

ordP (f)[P] ∈ Div0(E).

This is actually a (zero-degree) divisor because of the following:

Proposition 4.5. Let C/K be a smooth curve and f ∈ K̄(C)×. Then there are only finitely many points of C
at which f has a pole or zero; and if f has no poles, then f ∈ K̄. Finally, deg(div(f)) = 0.

5

We shall define the Picard group of E and it’s zero-degree part:

Pic(E) := Div(E)�div(K̄(E)×)

Pic0(E) := Div0(E)�div(K̄(E)×).

The following two results say that the group E(K̄) is isomorphic to Pic0(E).

Theorem 4.6. Let E be an elliptic curve. Let D be a divisor on E with deg(D) = 0. Then there is a function
f on E with div(f) = D, if and only if sum(D) =∞.

Corollary 4.7. The map sum : Pic0(E)→ E(K̄) is an isomorphism of groups.

To construct the pairing, we need a result about rational maps between curves.

Theorem 4.8. Let φ : C1 → C2 be a morphism of curves. Then φ is either constant or surjective.

Assume now charK - n, and so E[n] ∼= Z/nZ ⊕ Z/nZ. Let’s construct the Weil pairing. Fix T ∈ E[n]. By
Theorem 4.6 there exists f ∈ K̄(E) such that

div(f) = n[T]− n[∞].

Choose T ′ ∈ E[n2] such that nT ′ = T (the map [n] is surjective). There exists a function g such that

div(g) =
∑

R∈E[n]

[T ′ +R]− [R],

because its sum is n2T ′ = nT = ∞. The function g does not depend on the choice of T ′, because any two
choices for T ′ differ by an element R ∈ E[n]. Therefore we can also write

g =
∑

nT ′′=T

[T ′′]−
∑

nR=∞
[R].

Consider now the map f ◦[n]. Then for every P = T ′+R, nP = T ; and obviously nR =∞ (for all R ∈ E[n]).
Therefore

div(f ◦ [n]) = n

(∑
R

[T ′ +R]

)
− n

(∑
R

[R]

)
= div(gn).

Multiplying by a constant in K̄×, we may assume f ◦ [n] = gn.
Let S ∈ E[n]. Then for every X ∈ E(K̄),

g(X + S)n = f(n(X + S)) = f(nX) = g(X)n.

Therefore g(X + S)/g(X) is an nth root of unity. In particular, this quotient takes values from the finite set
µn, and so does the morphism

E → P1

X 7→ g(X + S)

g(X)
.

Thus the map must be constant2.
We can define the Weil pairing

en(S, T) :=
g(X + S)

g(X)
,

independent of X. This freedom in the choice of X will be used in proving the properties of the pairing. Note
that although g may vary by a constant in K̄×, this doesn’t affect the definition of the pairing. The function g
does depend on T , we could also write fT and gT .

We are ready to prove the properties of the Weil pairing.

2This kind of reasoning is introduced in the second chapter of Silverman’s AEC[3].

6

a) Bilinear. For the first variable, we have

en(S1 + S2, T) =
g(X + S1 + S2)

g(X)
=
g(X + S1 + S2)

g(X + S1)

g(X + S1)

g(X)
= en(S1, T)en(S2, T).

For the second, let T1,T2, T3 = T1 + T2, and consider the functions f1, f2, f3, g1, g2, g3 as constructed before.
Also, consider the function h such that

div(g) = [T3]− [T1]− [T2] + [∞].

Then div
(

f3
f1f2

)
= ndiv(h) =⇒ ∃c ∈ K̄× such that

f3 = c · f1 · f2 · hn.

Composing with the map [n], using gni = fn ◦ [n] and taking nth roots, we get g3 = c′ · g1 · g2 · (h ◦ [n]).
Therefore

en(S, T1 + T2) =
g3(X + S)

g3(X)
=
g1(X + S)g2(X + S)h(nX + nS)

g1(X)g2(X)h(nX)

=
g1(X + S)g2(X + S)

g1(X)g2(X)
= en(S, T1)en(S, T2).

b) Alternating. By last property,

en(S + T, S + T) = en(S, S)en(S, T)en(T, S)en(T, T).

This implies we only need to show en(T, T) = 1 for all T ∈ E[n].

Let τP : E → E be the translation by P ∈ E map (it is a rational map, but not an isogeny, unless P = ∞
and τP = idE). Then

div

(
n−1∏
i=0

f ◦ τiT

)
= n

n−1∑
i=0

[1− iT]− [−iT] = 0

=⇒
∏n−1
i=0 f ◦ τiT is constant, and if T ′ ∈ E is such that nT ′ = T , then

∏n−1
i=0 g ◦ τiT ′ is also constant.

Therefore we may apply it to X + T ′ and X, and

n−1∏
i=0

g(X + (1 + i)T ′) =

n−1∏
i=0

g(X + iT ′),

which cancelling terms gives us g(X + nT ′) = g(X). Thus

g(X + T)

g(X)
= 1.

c) Non-degenerate. Assume we have g(X + S) = g(X) for all S ∈ E[n]. Then there exists h ∈ K̄(E)× such
that g = h ◦ [n]. Raising to n we have (h ◦ [n])n = gn = f ◦ [n]. Since [n] is surjective on E(K̄), we have
f = hn. Therefore, ndiv(h) = div(f) = n[T]− n[∞], and div(h) = [T]− [∞] =⇒ T =∞.

Using (b) we get the non-degeneracy in the first variable.

d) Galois invariant. Let σ ∈ Gal(K̄|K). If f, g are the functions constructed fixing T , then fσ, gσ are the
ones for Tσ. For instance,

div(fσ) = n[Tσ]− n[∞].

We have

σ(en(T, S)) = σ

(
g(X + S)

g(X)

)
=
gσ(Xσ + Sσ)

gσ(Xσ)
= en(Sσ, Tσ).

�

7

4.4 The MOV attack

Let K = Fq be a finite field, consider an elliptic curve E/K. The use of this algorithm (by Menezes, Okamoto
and Vanstone [2]) is to solve discrete logarithms Q = kP when the base point P has order N coprime with the
characteristic. This is done by translating the ECDLP to a DLP in a finite extension of the field via the Weil
pairing eN .

First we look at a characterization of the points in the cyclic group generated by a point. The proof will
give us an idea for understanding the attack.

Lemma 4.9. Given Q ∈ E(Fq), there exists k such that Q = kP ⇐⇒ NQ =∞ and eN (P,Q) = 1.

Proof. If Q = kP , then NQ = kNP =∞. Also, eN (P,Q) = eN (P, kP) = eN (P, P)k = 1.
Conversely, assume NQ = ∞ and eN (P,Q) = 1. Then Q ∈ E[N]. Because gcd(N, q) = 1, we have

E[N] = Z/NZ⊕ Z/NZ, let R ∈ E[N] be such that {P,R} is a base. Then Q = aP + bR. We have

1 = eN (P,Q) = eN (P, P)aeN (P,R)b = ζb,

which implies N |b and so bR =∞. Therefore Q = aP .

Let’s describe now the MOV attack. Choose m so that E[N] ⊂ E(Fqm). Such an m exists, because E[N] is
finite and F̄q =

⋃
j≥1 Fqj . Then µN ⊂ Fqm . The algorithm is the following:

1. Choose a random point T ∈ E(Fqm).

2. Compute the order M of T .

3. Let d = gcd(M,N), and let T1 = M
d T , which has order d, which divides N . Thus T1 ∈ E[N].

4. Compute ζ1 = eN (P, T1) and ζ2 = eN (Q,T1) (Q = kP =⇒ ζ2 = ζk1). Then both ζ1 and ζ2 lie in
µd ⊆ µN ⊂ F×qm .

5. Solve the discrete logarithm problem ζ2 = ζk1 in F×qm . This will give k mod d.

6. Repeat with random points T until the least common multiple of the various d’s is N . This determines k
mod N .

References

[1] Scott Vanstone Alfred Menezes Paul van Oorschot. Handbook of applied cryptography. 1st ed. Discrete
Mathematics and Its Applications. CRC Press, 1996. isbn: 9780849385230,0849385237.

[2] Alfred Menezes, Scott Vanstone, and Tatsuaki Okamoto. “Reducing Elliptic Curve Logarithms to Log-
arithms in a Finite Field”. In: Proceedings of the Twenty-third Annual ACM Symposium on Theory of
Computing. STOC ’91. New Orleans, Louisiana, USA: ACM, 1991, pp. 80–89. isbn: 0-89791-397-3. doi:
10.1145/103418.103434. url: http://doi.acm.org/10.1145/103418.103434.

[3] Joseph H. Silverman. The arithmetic of elliptic curves. 2nd ed. Graduate Texts in Mathematics 106.
Springer-Verlag New York, 2009. isbn: 0387094938,9780387094939.

[4] Andrew Sutherland. 18.783 Elliptic Curves. Massachusetts Institute of Technology: MIT OpenCourseWare.
Spring 2017. url: https://ocw.mit.edu. License: Creative Commons BY-NC-SA.

[5] Lawrence C. Washington. Elliptic curves: number theory and cryptography. 2nd ed. Discrete Mathematics
and Its Applications. Chapman and Hall/CRC, 2008. isbn: 1420071467,9781420071467,9781420071474.

8

http://dx.doi.org/10.1145/103418.103434
http://doi.acm.org/10.1145/103418.103434
https://ocw.mit.edu

	Statement
	Index calculus in Fp
	Generic algorithms for the DLP
	Baby step, Giant step
	Pollard's
	Integer factoring
	Logarithms

	Pollard's
	Pollard's Kangaroo Algorithm
	Pohlig-Hellman

	The ECDLP
	Torsion points
	The Weil pairing
	Divisors and construction of the Weil pairing
	The MOV attack

